m = 5 kg
a = 2 m/s²
to find the force that accelerates the 4 kg object @ 2 m/s²
F = ma = 5 kg x 2 m/s² = 10 N
To find what acceleration 10 N would give a 20 kg object
a = F/m = 10 N/20 kg = 0.5 m/s
Answer:
c
Explanation:
though c is wider it has more water.
Answer:(10.69, 11.436)
Explanation:
Given
initial height of ball is 2 m
height of basket is 3.05 m
Launching angle

y=1.05
equation of trajectory of ball is given by

for x=12.27

u=10.69
for x=11.73

u=11.436 m/s
Thus range of speed is (10.69, 11.436)
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)