1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
2 years ago
8

HELP ME ASAP!!!!

Physics
1 answer:
jok3333 [9.3K]2 years ago
7 0

Answer:

Identity versus confusion is the fifth stage of ego according to psychologist Erik Erikson's theory of psychosocial development.

Explanation:This stage occurs during adolescence between the ages of approximately 12 and 18. During this stage, adolescents explore their independence and develop a sense of self.

You might be interested in
A force gives a 5.0 kg object an acceleration of 2.0 m/s 2. The same force would give a 20 kg object an acceleration of _____. 0
Oksi-84 [34.3K]

m = 5 kg

a = 2 m/s²

to find the force that accelerates the 4 kg object @ 2 m/s²

F = ma = 5 kg x 2 m/s² = 10 N

To find what acceleration 10 N would give a 20 kg object

a = F/m = 10 N/20 kg = 0.5 m/s

6 0
3 years ago
Read 2 more answers
Is the answer C or B​
inessss [21]

Answer:

c

Explanation:

though c is wider it has more water.

6 0
3 years ago
Read 2 more answers
A basketball leaves a player's hands at a height of 2.00 m above the floor. The basket is 3.05 m above the floor. The player lik
shutvik [7]

Answer:(10.69, 11.436)

Explanation:

Given

initial height of ball is 2 m

height of basket is 3.05 m

Launching angle=40^{\circ}

x =12\pm 0.27

y=1.05

equation of trajectory of ball is given by

y=xtan\theta -\frac{gx^2}{2u^2cos^2\theta }

for x=12.27

1.05=12.27\times tan40-\frac{g12.27^2}{2u^2cos^{2}40 }

u=10.69

for x=11.73

1.05=11.73\times tan40-\frac{g11.73^2}{2u^2cos^{2}40 }

u=11.436 m/s

Thus range of speed is (10.69, 11.436)

3 0
3 years ago
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.
astra-53 [7]

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

5 0
3 years ago
7.22 Ignoring reflection at the air–water boundary, if the amplitude of a 1 GHz incident wave in air is 20 V/m at the water surf
Serga [27]

Answer:

z = 0.8 (approx)

Explanation:

given,

Amplitude of 1 GHz incident wave in air = 20 V/m

Water has,

μr = 1

at 1 GHz, r = 80 and σ = 1 S/m.

depth of water when amplitude is down to  1 μV/m

Intrinsic impedance of air = 120 π  Ω

Intrinsic impedance of  water = \dfrac{120\pi}{\epsilon_r}

Using equation to solve the problem

  E(z) = E_0 e^{-\alpha\ z}

E(z) is the amplitude under water at z depth

E_o is the amplitude of wave on the surface of water

z is the depth under water

\alpha = \dfrac{\sigma}{2}\sqrt{\dfrac{(120\pi)^2}{\Epsilon_r}}

\alpha = \dfrac{1}{2}\sqrt{\dfrac{(120\pi)^2}{80}}

\alpha =21.07\ Np/m

now ,

  1 \times 10^{-6} = 20 e^{-21.07\times z}

  e^{21.07\times z}= 20\times 10^{6}

taking ln both side

21.07 x z = 16.81

z = 0.797

z = 0.8 (approx)

5 0
3 years ago
Other questions:
  • A race car is one lap behind the lead race car when the lead car has 44 laps to go in a race. If the speed of the lead car is 55
    15·1 answer
  • What is general relativity
    10·1 answer
  • Hdhshabxbxhxhjdhdhsjshs
    9·1 answer
  • Give an example of a situation in which you would describe an object's position in
    9·1 answer
  • A sound-producing object is moving away from an observer. The sound the observer hears will have a frequency that actually being
    10·2 answers
  • If a pigeon flew 1000 meters north in 48 seconds, what is its average velocity?
    5·2 answers
  • My brother stirs milk and sugar into his coffee. After he has finished stirring the coffee continues to spin around. What does t
    14·1 answer
  • A cannon tilted up at a 29.0° angle fires a cannon ball at 81.0 m/s from atop a 22.0 m -high fortress wall. What is the ball's i
    12·1 answer
  • Why is the Big Bang a theory and not a fact
    15·2 answers
  • The color green and blue are visual preference for newborns<br> A. True<br> B. False
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!