Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Answer:
9, 10, 11, 12, 13
Step-by-step explanation:
(x-2)+(x-1)+x+(x+1)+(x+2) = 55
5x = 55
x = 11
Answer:
(b) 
Step-by-step explanation:
When two p and q events are independent then, by definition:
P (p and q) = P (p) * P (q)
Then, if q and r are independent events then:
P(q and r) = P(q)*P(r) = 1/4*1/5
P(q and r) = 1/20
P(q and r) = 0.05
In the question that is shown in the attached image, we have two separate urns. The amount of white balls that we take in the first urn does not affect the amount of white balls we could get in the second urn. This means that both events are independent.
In the first ballot box there are 9 balls, 3 white and 6 yellow.
Then the probability of obtaining a white ball from the first ballot box is:

In the second ballot box there are 10 balls, 7 white and 3 yellow.
Then the probability of obtaining a white ball from the second ballot box is:

We want to know the probability of obtaining a white ball in both urns. This is: P(
and
)
As the events are independent:
P(
and
) = P (
) * P (
)
P(
and
) = 
P(
and
) = 
Finally the correct option is (b) 