Aluminum chloride is an ionic salt with the formula AlCl3. The reason for the three chlorine atoms is because aluminum donates an electron to each chlorine atom.
By stoichiometry and assume
that:
CxH2xOy + zO2 -> xCO2
+ xH2O
<span>
CO2: 9.48/44 = 0.215 mmol
H2O: 3.87/18 = 0.215 mmol
mass of C = 0.215 * 12 = 2.58 mg
mass of H = 0.215 * 2 * 1 = 0.43 mg
mass of O in ethylbutyrate = 4.17 - 2.58 - 0.43 = 1.11 mg
So C/O = 2.58/1.11 ≈ 3 </span>
<span>
Thus we have C3H6O</span>
<span> </span>
Carbon Dioxide with water and sunlight produce glucose and oxygen
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
The equation is 2 NH3 (g) ⇀↽ N2 (g) + 3 H2 (g)
Difference in the number of moles delta n = ((3 + 1) - 2) = 4 - 2 = 2
We have an equation Kp= Kc (R x T) ^ (delta n); R is constant and T = 300 K
Kp / Kc = (R x T) ^2 Based on the temperature value (300 K), we can conclude that Kp is Larger.