For an object to conduct electricity it should have free or delocalised electrons that are free to pass the charge and hence take part in conducting electricity.
From the given choices
Chlorine is a halogen existing as a diatomic gas. Iodine too is a halogen and 2 Iodine atoms held together by covalent bond. Cl - Cl bonds and I-I bonds are covalent bonds. the outer electrons of Cl and I take part in covalent bonds therefore they are fixed and not free to move about. therefore no free electrons to conduct electricity.
Sulfur is a solid that too is held together by covalent bonds so it does not have free electrons to conduct electricity.
Silver is a metal and a general property of metals are their ability to conduct electricity.
metal structure are metal ions tightly packed together. when the metal atoms are tightly packed their valence electrons are removed and delocalised. Positively charged metal ions are embedded in a sea of delocalised electrons.
therefore there are delocalised electrons that can conduct electricity
answer is 3) silver
I would imagine they’d be equal.
F = ma
We can treat mass and force as constants because they do not change throughout both systems and they are the same on both systems. That would mean the acceleration would be the same for both systems.
An explanation of this could be the two forces are acting in different directions, so one is positively accelerating the object and the other is negatively accelerating it
Answer:moles = no. of molecules / Avogadro's number
= 2.26 x 10^33 / 6.022 x 10^23
= 3752906011
Round to significant figures which is 3 = 3.75 x 10^9 mol
Explanation:
The formula for finding how many moles of a substance when given the amount of molecules is: moles = number of molecules / Avogadro's number
Answer:
Break up the soil to increase the number of pores should be your answer.
Explanation:
If you do that it will increase the amount of water in the plant.
Answer:
2.57 g of H₂
Solution:
The Balance Chemical Equation is as follow,
N₂ + 3 H₂ → 2 NH₃
According to Balance equation,
34.06 g (2 moles) NH₃ is produced by = 6.04 g (3 moles) of H₂
So,
14.51 g of NH₃ will be produced by = X g of H₂
Solving for X,
X = (14.51 g × 6.04 g) ÷ 34.06 g
X = 2.57 g of H₂