Answer:
11.94 grams of carbon dioxide were originally present.
19.94 grams of krypton can you recover.
Explanation:
Mass of carbon dioxide gas = x
Mass of krypton gas = y
x + y = 31.7 g
Moles of carbon dioxide gas = 
Moles of krypton gas = 
Mole fraction of krpton =
Total pressure of the mixture = P = 0.665 atm
Partial pressure of carbon dioxide gas = p
Partial pressure of krypton gas before removal of carbon dioxide gas = p'
Partial pressure of krypton gas after removal of carbon dioxide gas = p'' = 0.309 atm
p' = p'' = 0.309 atm
0.665 atm = p + 0.309 atm
p = 0.665 atm - 0.306 atm = 0.359 atm
Partial pressure of krypton can also be given by :



..[2]
Solving [1] and [2]:
x = 11.94 g
y = 19.76 g
11.94 grams of carbon dioxide were originally present.
19.94 grams of krypton can you recover.
Answer:
The solvent is deionised water
The solute is AgNO3
The solution is [Ag(aq) + NO3(aq)-]
Explanation:
- This is because it contains no ions which would otherwise react with AgNO3 thus AgNO3 just disolves releasing free Ag+ and NO3- . The resiltant solution can test for Cl presence
- AgNO3 is a soluble salt in water thus disolves in water
- AgNO3 disolves releasing free ions which can be called ionisation
Answer:
Two compounds.
Explanation:
If you have two peaks in your gas chromatograph, this means that you have two compounds.
The gas chromatograph is an instrument that helps identify how many compounds a substance has by observing its behavior against a solid medium through adsorption and the velocity of each compound in it.
Answer:
Q = 16163.88 Joules
Explanation:
Given the following data;
Initial temperature, T1 = -25°C
Final temperature, T2 = 150°C
Mass = 45.5 g
Specific heat capacity of ice = 2.03 J/g°C
To find the quantity of heat required;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 150 - (-25)
dt = 150 + 25
dt = 175°C
Substituting into the formula, we have;
Q = 16163.88 Joules