Answer:
A. 28 years
Explanation:
Applying,
R = R'(2ᵃ/ⁿ).............. Equation 1
Where R = Original sample, R' = Sample left after decay, a = Total time taken to decay, n = half life.
From the question,
Given: R = 12 g, R' = 6 g, a = 28 years.
Substitute into equation 1 and solve for n
12 = 6(2²⁸/ⁿ)
12/6 = 2²⁸/ⁿ
2²⁸/ⁿ = 2
Equation the base,
28/n = 1
n = 28 years.
Hence the half-life is 28 years
Answer:
The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Explanation:
In this question, they ask about chemical reactions and the comparison of the mass of reactants and products. Firstly, it is necessary to introduce the mass conservation principle.
Mass conservation principle mentions that in a chemical reaction, the total mass of reactants is equal to the total mass of products (if the reaction is fully developed). It means mass is not created or destroyed, only transforms from reactants to products.
For example, the mass of sodium plus the mass of chlorine that reactswith the sodium equals the mass of the product sodium chloride.Because atoms are only rearranged in a chemical reaction, there mustbe the same number of sodium atoms and chlorine atoms in both thereactants and products.
Finally, we can conclude that The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Answer: Option (d) is the correct answer.
Explanation:
The amount of salt present or dissolved in water or water body is known as salinity.
When salinity increases then number of particles increases, therefore, density will increase. Also, number of ions will decrease thus, electrical conductivity will decrease.
On the other hand, increase in salinity will increase the amount of salt (NaCl) is the water.
Thus, we can conclude that out of the given options, the option all of the above is true.
Electric current is the flow of electrons in a wire. ... They are no longer firmly held by a specific atom, but instead they can move freely through the lattice of positive metal ions