Answer:
Explanation:
Let the magnitude of magnetic field be B .
flux passing through the coil's = area of coil x field x no of turns
Φ = 3.13 x 10⁻⁴ x B x 135 = 422.55 x 10⁻⁴ B .
emf induced = dΦ / dt , Φ is magnetic flux.
current i = dΦ /dt x 1/R
charge through the coil = ∫ i dt
= ∫ dΦ /dt x 1/R dt
= 1 / R ∫ dΦ
= Φ / R
Total resistance R = 61.1 + 44.4 = 105.5 ohm .
3.44 x 10⁻⁵ = 422.55 x 10⁻⁴ B / 105.5
B = 3.44 x 10⁻⁵ x 105.5 / 422.55 x 10⁻⁴
= .86 x 10⁻¹
= .086 T .
Answer:
1) Q ’= 8 Q
, 2) q ’= 16 q
, 3) r ’= ¾ r
Explanation:
For this exercise we will use Coulomb's law
F = k q Q / r²
It asks us to calculate the change of any of the parameters so that the force is always F
Original values
q, Q, r
Scenario 1
q ’= 2q
r ’= 4r
F = k q ’Q’ / r’²
we substitute
F = k 2q Q ’/ (4r)²
F = k 2q Q '/ 16r²
we substitute the value of F
k q Q / r² = k q Q '/ 8r²
Q ’= 8 Q
Scenario 2
Q ’= Q
r ’= 4r
we substitute
F = k q ’Q / 16r²
k q Q / r² = k q’ Q / 16 r²
q ’= 16 q
Scenario 3
q ’= 3/2 q
Q ’= ⅜ Q
we substitute
k q Q r² = k (3/2 q) (⅜ Q) / r’²
r’² = 9/16 r²
r ’= ¾ r
True. It would be false if the statement was "trunk rotation is the most common <em>static</em> flexibility assessment."
So, you're answer should be "true". Hope that helped!
Answer:
.5 units north
<em><u>or</u></em>
55 ft/minutes(<em>squared</em>) north
Explanation:
.5 is what your info gives me but if i take that the average distance a block is it is 660ft than the answer is 55.
Answer:
Dimension of cardboard is 22 m by 16 m
Explanation:
Given that,
Area = 352 cm²
Side of each square cutting from corner = 2 cm
Volume of box = 432 cm³
Let the two sides are x and y.
The area of the rectangular piece is

-------- (1)
The volume of the rectangular piece



x=16,22
Put the value of x in the equation (I)
For x = 16
For x = 22
Dimension of cardboard is 22 m by 16 m