Answer:
Gravity.
Rocket ships.
Ball.
Basketball.
Explanation:
Gravity has to do a lot with air. It puts the planets in there area.
Rocket Ship has to do a lot with air. If i'm right, they calculate the area, weather, about the air.
A ball gets throwed in the air, which gravity comes into place.
Basketball is also a similar example to a ball.
Answer:
y₀ = 10.625 m
Explanation:
For this exercise we will use the kinematic relations, where the upward direction is positive.
y = y₀ + v₀ t - ½ g t²
in the exercise they indicate the initial velocity v₀ = 8 m / s.
when the rock reaches the ground its height is zero
0 = y₀ + v₀ t - ½ g t²
y₀i = -v₀ t + ½ g t²
let's calculate
y₀ = - 8 2.5 + ½ 9.8 2.5²
y₀ = 10.625 m
Answer:
diffraction
Explanation:
diffraction occurs when light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands
Answer:
option (B)
Explanation:
Young's modulus is defined as the ratio of longitudinal stress to the longitudinal strain.
Its unit is N/m².
The formula for the Young's modulus is given by

where, F is the force applied on a rod, L is the initial length of the rod, ΔL is the change in length of the rod as the force is applied, A is the area of crossection of the rod.
It is the property of material of solid. So, when the 10 wires are co joined together to form a new wire of length 10 L, the material remains same so the young' modulus remains same.
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.