Answer:

Explanation:
For this case we have the following info given:
Number of Na+ ions 
Each ion have a charge of +e and the crage of the electron is 
The time is given
if we convert this into seconds we got:

Now we can use the following formula given from the current passing thourhg a meter of nerve axon given by:

Where N represent the number of ions, e the charge of the electron and Q the total charge
If we replace on this case we have this:

And from the general definition of current we know that:

And since we know the total charge Q and the time we can replace:

The current during the inflow charge in the meter axon for this case is 
Answer:
C.<u>ten</u><u> </u><u>times</u><u> </u><u>the</u><u> </u><u>intensity</u><u>.</u>
Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis
<span>This spectrometer reading shows some red, blue, and purple. Our atom is most likely Hydrogen source.
This spectrometer reading shows some reds, orange, and yellow. Our atom is most likely Neon source.
This spectrometer reading shows some red, yellow, and blue. Our atom is most likely Helium source.
This spectrometer reading shows some yellow, blue, and purple. Our atom is most likely Mercury source</span>
1/2mv^2
1/2x12x10^2=600J
The kinetic energy is 600J