<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>:</em><em>)</em>
<em>✌</em><em>✌</em><em>✌</em><em>✌</em><em>✌</em><em>✌</em>
Answer:
d.100 meters
Explanation:
The diameter of the Milky Way Galaxy is approximately 100,000 light years.
Here we are using 1 millimiter (1 mm) to represent 1 light-year (1 ly). So, we can set the following proportion:

and by finding x, we find the diameter of the Milky Way Galaxy in the scale used:

so the correct answer is
d. 100 meters
Heat = change in internal energy + Work done The internal energy of a system = heat added and mechanical work done by the system, i.e. U = Q + W rearranging the formula above, will give us: Q = deltaU + W
Q = U - W = 604 kJ - 43.0 kJ = 561,000 J would be the answer.
When it comes to wave behavior, there are parameters called wavelength and frequency. These two are related by speed of the radiowave. Radiowaves are electromagnetic waves which travels as fast as light. The wavelength is the distance while frequency is the reciprocal of time. When you multiply them both, you get the electromagnetic wave's speed. The equation is c = wavelength*frequency, where c is the speed of light equal to 3 x 10^8 m/s.
3 x10^8 m/s = wavelength/104.9 x 10^6 Hz (Hertz is 1/s)
wavelength = 2.86 meters
The new velocity after 4 s is 40 m/s
The height of the spaceship above the ground after 5 seconds is 1,127.5 m
The given parameters for the first question;
- initial velocity of the car, u = 76 m/s
- acceleration of the car, a = - 9 m/s²
The new velocity after 4 s is calculated as;
v = u + at
v = 76 + (-9)(4)
v = 76 - 36
v = 40 m/s
(5)
The given parameters;
- height above the ground, h = 500 m
- velocity of spaceship, u = 150 m/s
The height of the spaceship above the ground after 5 seconds is calculated as;

Learn more here: brainly.com/question/24527971