1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
3 years ago
8

I don't know how to figure it out

Physics
1 answer:
drek231 [11]3 years ago
4 0
Nice couch lol
and aluminum I think
You might be interested in
A ball bearing of radius of 1.5 mm made of iron of density
Serjik [45]

Answer:

\boxed{\sf Viscosity \ of \ glycerine \ (\eta) = 14.382 \ poise}

Given:

Radius of ball bearing (r) = 1.5 mm = 0.15 cm

Density of iron (ρ) = 7.85 g/cm³

Density of glycerine (σ) = 1.25 g/cm³

Terminal velocity (v) = 2.25 cm/s

Acceleration due to gravity (g) = 980.6 cm/s²

To Find:

Viscosity of glycerine (\sf \eta)

Explanation:

\boxed{ \bold{v =  \frac{2}{9}  \frac{( {r}^{2} ( \rho -  \sigma)g)}{ \eta} }}

\sf \implies \eta =  \frac{2}{9}  \frac{( {r}^{2}( \rho -  \sigma)g )}{v}

Substituting values of r, ρ, σ, v & g in the equation:

\sf \implies \eta =  \frac{2}{9}  \frac{( {(0.15)}^{2}  \times  (7.85 - 1.25) \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \frac{(0.0225 \times 6.6 \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times  \frac{145.6191}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times 64.7196

\sf \implies \eta =  2 \times 7.191

\sf \implies \eta =  14.382 \: poise

6 0
3 years ago
Freezing Point Depression: Can someone explain this formula to me? ΔTf = Kfcm
Leya [2.2K]
If the solution is treated as an ideal solution, the extent of freezing point depression depends only on the solute concentration that can be estimated by a simple linear relationship with the cryoscopic constant: ΔTF = KF · m · i ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF (solution). KF, the cryoscopic constant, which is dependent on the properties of the solvent, not the solute. Note: When conducting experiments, a higher KF value makes it easier to observe larger drops in the freezing point. For water, KF = 1.853 K·kg/mol.[1] m is the molality (mol solute per kg of solvent) i is the van 't Hoff factor (number of solute particles per mol, e.g. i = 2 for NaCl).
8 0
3 years ago
A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with time according to θ(t)=γt
Lana71 [14]

Answer:

hufiui

fihgpfghlfikgergkfkjhfkhjgkffhhh

Explanation:

jjgzgcjxhgygueyuufhfugkhkckgijljhgxjgjgffhgkgjxhxjgjcjckvjgghkhkgjgjfhfhfhffrusufsflslrsyfhldufñlñudtoqdyhjjxkgsgjfktwlyfñujxjxhlxlhdktstedoyñfuyñflldytidoyeyljjcñcjluffñui5woyepurñfuñufldyrajuñdlydstdyñudñydktshñxjcñydiw5uñfitwoyeoyeñufñfuñifjñufhlsyñeifññydoysitaiwtuñdyñdlsyltslsyoyeylsuñdñjjcyldlyslatlysñudidñjdñfjñjjxlhsmzhmzjjdjdlhdñhjdñjdñjddñhflhuñfhxltkds4urayraylraluarularuñstuñtsuñtsultsuñtsuñstñitsñktssistustlulsrustlularyralultalutslutajltsñgskjlgzljg?g o uguhxputxipyfugxiñhxiñhfuñdguldthgksjmgdjmgkhdjlgdjlgd

pduoyditsyafylrayoraourauptautospustistiptsñitsñitsñitsiptsiteitdustuñtsuñtsñitwiñstñitwñitsñstuuñrsoursurosoustjlsrlutejlgsjlstjfsjlgsultsjgzjñgsññkdylfhkñdgjlfshkadmjgsuñstñkydñkydñiykdhiñstñitsuñtsisñtñtieñietñietñiteñiwtñitskñgsiñteuñwrkñsturaluglsuñtwjlfalfjalhadoyfutdllgdñitswtkgsñktjrajtsurwñwñutiñtsiwñtuwñturqlñitwualtayoryarluarlietite

7 0
3 years ago
Since the moon has less mass than the earth what happens to objects on the moon
postnew [5]
When you drop an object on the moon, it falls to the ground.
But it only falls about 1/6 as fast as it falls on Earth.
4 0
3 years ago
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a string to a block with mass m2 = 0.825 kg as shown in the figur
morpeh [17]

The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

<h3>Angular Speed of the pulley </h3>

The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;

K.E = P.E

\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\

\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] =  4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\

Substitute the given parameters and solve for the angular speed;

\omega = \sqrt{\frac{ 4(9.8)(0.7)(0.365 \ - \ 0.25\times 0.825) - 2(0.825)(0.82)^2}{2(0.03)^2(0.365 \ + \ 0.825)\  \ +\  \ 0.35(0.02^2\  + \ 0.03^2)}} \\\\\omega = \sqrt{\frac{3.25}{0.00214\ + \ 0.000455 } } \\\\\omega = 35.39 \ rad/s

<h3>Linear speed of the block</h3>

The linear speed of the block after travelling 0.7 m;

v = ωR₂

v = 35.39 x 0.03

v = 1.1 m/s

Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

Learn more about conservation of energy here: brainly.com/question/24772394

5 0
2 years ago
Other questions:
  • What physical property of light changes and causes the light to refract, or bend?
    11·1 answer
  • Why does the quantum mechanical description of many-electron atoms make it difficult to define a precise atomic radius?
    11·1 answer
  • A basketball player can jump 1.6 m off the hardwood floor. With what upward velocity did he leave the floor?
    7·2 answers
  • Learning to ride a bike, is what kind of learning?
    8·1 answer
  • If a cell is dying because it lacks an inorganic substance that is important for nutrition, what does it need?
    10·1 answer
  • is a constant related to the size and composition of the ball as well as the viscosity of the syrup. Find the rate at which grav
    8·1 answer
  • An electron and a proton are separated by a distance of 1.6×10−10m
    6·1 answer
  • Two students conduct a study to investigate the relationship between forearm length and height. Maria measures the subjects in c
    5·1 answer
  • c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until fri
    10·1 answer
  • Why is it important for scientists to replicate each other’s experiments?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!