Answer:
<u><em>a. True</em></u>
Explanation:
<em>Vectors are an important part of the language of science, mathematics, and engineering.</em>
Help with whatttt? there’s nothing
Answer:
Compaction and cementation
Explanation:
Cementation: As ions are deposited by fluids to form a compound that hardens loose sedimentary rocks.
Compaction: As the density of sedimentary rocks on edge of them are forced together through sediments.
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.
Answer:
a) I = 2279.5 N s
, b) F = 3.80 10⁵ N, c) I = 3125.5 N s and d) F = 5.21 10⁵ N
Explanation:
The impulse is equal to the variation in the amount of movement.
I =∫ F dt = Δp
I = m
- m v₀
Let's calculate the final speed using kinematics, as the cable breaks the initial speed is zero
² = V₀² - 2g y
² = 0 - 2 9.8 30.0
= √588
= 24.25 m/s
a) We calculate the impulse
I = 94 24.25 - 0
I = 2279.5 N s
b) Let's join the other expression of the impulse to calculate the average force
I = F t
F = I / t
F = 2279.5 / 6 10⁻³
F = 3.80 10⁵ N
just before the crash the passenger jumps up with v = 8 m / s, let's take the moments of interest just when the elevator arrives with a speed of 24.25m/s down and as an end point the jump up to vf = 8 m / n
c) I = m
- m v₀
I = 94 8 - 94 (-24.25)
I = 3125.5 N s
d) F = I / t
F = 3125.5 / 6 10⁻³
F = 5.21 10⁵ N