1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
8

Darryl finds a bottle of what looks like clear water, with dirt settled at the bottom. When he shakes the bottle, the water gets

dirty. Which term best describes the matter in the bottle?
Physics
1 answer:
Alexus [3.1K]3 years ago
7 0
Was there any choice of answers so i can help or something u have to figure out
You might be interested in
Which quantity must equal zero if a car is moving at a constant rate along a straight line?
Virty [35]
B the energy of the car. Sorry if this is not right
3 0
3 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
A hotel elevator ascends 200m with maximum speed of 5m/s. Its acceleration and deceleration both have a magnitude of 1.0m/s2. Pa
ValentinkaMS [17]

Answer:

45 s .

Explanation:

The accelerator will first accelerate , then move with uniform velocity and at last it will decelerate to rest .

displacement s = ?

acceleration a = 1 m /s²

Final speed v = 5 m/s

initial speed u = 0

v² = u² + 2as

5² = 0 + 2 x 1 x s

s = 12.5  m

B)  Let time of acceleration or deceleration be t

v = u + a t

5 = 0 + 1 t

t = 5 s

Similarly displacement during deceleration = 12.5 m

Total distance during uniform motion = 200 - ( 12.5 + 12.5 ) =  175 m .

velocity of uniform motion = 5 m /s

time during which there was uniform velocity = 175 / 5 = 35 s

Total time = 5 + 35 + 5 = 45 s .

4 0
3 years ago
At a picnic, there is a contest in which hoses are used to shoot water at a beach ball from three different directions. As a res
hram777 [196]

Answer:

F₃ = 122.88 N

θ₃ = 20.63°

Explanation:

First we find the components of F₁:

For x-component:

F₁ₓ = F₁ Cos θ₁

F₁ₓ = (50 N) Cos 60°

F₁ₓ = 25 N

For y-component:

F₁y = F₁ Sin θ₁

F₁y = (50 N) Sin 60°

F₁y = 43.3 N

Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:

F₂ₓ = F₂ = 90 N

F₂y = 0 N

Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:

F₁ₓ + F₂ₓ + F₃ₓ = 0 N

25 N + 90 N + F₃ₓ = 0 N

F₃ₓ = - 115 N

for y-components:

F₁y + F₂y + F₃y = 0 N

43.3 N + 0 N + F₃y = 0 N

F₃y = - 43.3 N

Now, the magnitude of F₃ can be found as:

F₃ = √F₃ₓ² + F₃y²

F₃ = √[(- 115 N)² + (- 43.3 N)²]

<u>F₃ = 122.88 N</u>

and the direction is given as:

θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)

<u>θ₃ = 20.63°</u>

7 0
3 years ago
Genevieve was working on a science lab. In her lab, she was combining two chemicals and timing how long the reaction took to for
dexar [7]

Answer: Her test trials had a high level of accuracy but a low level of precision.

Explanation:

5 0
3 years ago
Other questions:
  • Over a period of one year, how much of the overall (night) sky would a Bellingham observer be able to see?
    10·1 answer
  • When a ball is thrown straight up with no air resistance, the acceleration at its highest point. A) is upward B) is downward C)
    13·1 answer
  • A large pendulum with a 200-lb gold plated bob 12 inches in diameter is on display in the lobby of the United Nations building.
    10·1 answer
  • In two grams of element x combine with 4 grams of element y to form compound xy how many grams of element why would combined wit
    13·1 answer
  • Different _______ of light through two separate mediums causes the bending of wave fronts associated with light rays.
    11·2 answers
  • Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
    13·1 answer
  • Which particles in an atom could demonstrate that opposite charges attract?
    8·2 answers
  • The stopping distances associated with slower speeds approximate the forward visibilities provided by low beam lights. However,
    11·1 answer
  • Please answer the question below. No files, No Docs, or any Link. ONLY REAL ANSWER. Whoever, answers this question will get 50 p
    5·1 answer
  • Which line represents a stationary object?<br> Position<br> Time
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!