Momentum - mass in motion
P=MV
P=(15,000 kg)(2.5 m/s)
P=37 500 kg x m/s to the north
Hope this helps
The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
less mass is more mass but less energy in more mass. less mass has more energy
Answer:
The magnitude of the tension in the cable, T is 1,064.315 N
Explanation:
Here we have
Length of beam = 4.0 m
Weight = 200 N
Center of mass of uniform beam = mid-span = 2.0 m
Point of attachment of cable = Beam end = 4.0 m
Angle of cable = 53° with the horizontal
Tension in cable = T
Point at which person stands = 1.50 m from wall
Weight of person = 350 N
Therefore,
Taking moment about the wall, we have
∑Clockwise moments = ∑Anticlockwise moments
T×sin(53) = 350×1.5 + 200×2
T = 850/sin(53) = 1,064.315 N.
Answer:
Explanation:
λ=c x²
c = λ / x²
λ is mass / length
so its dimensional formula is ML⁻¹
x is length so its dimensional formula is L
c = λ / x²
= ML⁻¹ / L²
= ML⁻³
B )
We shall find out the mass of the rod with the help of given expression of mass per unit length and equate it with given mass that is M
The mass in the rod is symmetrically distributed on both side of middle point.
we consider a small strip of rod of length dx at x distance away from middle point
its mass dm = λdx = cx² dx
By integrating it from -L to +L we can calculate mass of whole rod , that is
M = ∫cx² dx
= [c x³ / 3] from -L/2 to +L/2
= c/3 [ L³/8 + L³/8]
M = c L³/12
c = 12 M L⁻³
C ) Moment of inertia of rod
∫dmx²
= ∫λdxx²
= ∫cx²dxx²
= ∫cx⁴dx
= c x⁵ / 5 from - L/2 to L/2
= c / 5 ( L⁵/ 32 +L⁵/ 32)
= (2c / 160)L⁵
= (c / 80) L⁵
= (12 M L⁻³/80)L⁵
= 3/20 ML²
=
=