Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
Lycaon represents the worst of the iron age in his attempt to feed jupiter once living flesh.
<h3>
What is iron age?</h3>
The iron Age is the final epoch of the three-age division of the prehistory and protohistory of humanity.
It was preceded by the Stone Age, and the Bronze Age.
Who is lycaon?
In Greek mythology, Lycaon was a king of Arcadia who, in the most popular version of the myth, tested Zeus' omniscience by serving him the roasted flesh of Lycaon's own son Nyctimus, in order to see whether Zeus was truly all-knowing.
Thus, Lycaon represents the worst of the iron age in his attempt to feed jupiter once living flesh.
Learn more about lycaon here: brainly.com/question/18610700
#SPJ1
Joules is a unit for work which may decomposed into N.m. Work is a quantity which is a product of force (in this case, the woman's weight) and the distance she has traveled.
W = F x d ; d = W / F
Substituting the given,
d = (3.5 x 10^4 J) / (55 kg x 9.8 m/s²) = 64.94 m
Thus, the woman can climb up to 64.94 meters.