M= ?
g=9.8 m/s (2)
h=20 m
Eg=362,600 J
Eg/mg
362,600 J/9.8 m/s (2) x 20 m
=1,850 m
0.0605J is your answer. Use the formula KE=1/2mv^2
Answer:
The statement "If a positively charged rod is brought close to a positively charged object, the two objects will repel
" applies to electric charges.
Explanation:
There are only two types of electric charges. Both having own magnitude but different charge.
1. Positive charge
2. Negative charge
Like charges repel each other and opposite charges always attract each other.
When a positively charged rod is brought close to a positively charged object, the rod and the object will repel.
Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .