<u>Answer:</u> The correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
<u>Explanation:</u>
Ethylene is a compound given by the chemical formula
.
The bond present between hydrogen and carbon atoms or carbon and carbon atoms are covalent bonds. A covalent bond is formed by the sharing of electrons between the atoms combining.
A double bond is present between carbon and carbon atoms. So 2 pairs of electrons are shared which means in total of 4 electrons are shared.
Bond present between hydrogen and carbon atoms are single bonds. So, a pair of electrons is shared which means that in total of 2 electrons are shared.
Hence, the correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
Answer:
84 kj/min = 1.4 kj/sec
Power Out / Power In = Heat Out / Heat In - Coefficient of Performance
1.4 kj/sec / 1.2 kj/sec = 1.17 = COP
To solve this problem it is necessary to apply the concepts related to the frequency in a spring, the conservation of energy and the total mechanical energy in the body (kinetic or potential as the case may be)
PART A) By definition the frequency in a spring is given by the equation

Where,
m = mass
k = spring constant
Our values are,
k=1700N/m
m=5.3 kg
Replacing,


PART B) To solve this section it is necessary to apply the concepts related to the conservation of energy both potential (simple harmonic) and kinetic in the spring.

Where,
k = Spring constant
m = mass
y = Vertical compression
v = Velocity
This expression is equivalent to,

Our values are given as,
k=1700 N/m
V=1.70 m/s
y=0.045m
m=5.3 kg
Replacing we have,

Solving for A,



PART C) Finally, the total mechanical energy is given by the equation



Answer:
50.2 m
Explanation:
We can solve the problem by using the following SUVAT equation for the vertical position of the rock:

where
h is the initial height (the depth of the canyon), taking the bottom of the canyon as reference position
u = 0 is the initial velocity of the rock
t is the time
is the acceleration of gravity
When the rock reaches the bottom, t = 3.2 s and y = 0. Substituting these numbers and solving for h, we find the depth of the canyon:

<span>6.20 m/s^2
The rocket is being accelerated towards the earth by gravity which has a value of 9.8 m/s^2. Given the total mass of the rocket, the gravitational drag will be
9.8 m/s^2 * 5.00 x 10^5 kg = 4.9 x 10^6 kg m/s^2 = 4.9 x 10^6 N
Add in the atmospheric drag and you get
4.90 x 10^6 N + 4.50 x 10^6 N = 9.4 x 10^6 N
Now subtract that total drag from the thrust available.
1.250 x 10^7 - 9.4 x 10^6 = 12.50 x 10^6 - 9.4 x 10^6 = 3.10 x 10^6 N
So we have an effective thrust of 3.10 x 10^6 N working against a mass of 5.00 x 10^5 kg. We also have N which is (kg m)/s^2 and kg. The unit we wish to end up with is m/s^2 so that indicates we need to divide the thrust by the mass. So
3.10 x 10^6 (kg m)/s^2 / 5.00 x 10^5 kg = 0.62 x 10^1 m/s^2 = 6.2 m/s^2
Since we have only 3 significant figures in our data, the answer is 6.20 m/s^2</span>