<span>A) The data is skewed left and shows that on half of the days, Darren received 11 or 12 e-mails from the customer.</span>
Answer:
i cant see it
Step-by-step explanation:
<span>We can safely assume that 1212 is a misprint and the number of seats in a row exceeds the number of rows by 12.
Let r = # of rows and s = # of seats in a row.
Then, the total # of seats is T = r x s = r x ( r + 12), since s is 12 more than the # of rows.
Then
r x (r + 12) = 1564
or
r**2 + 12*r - 1564 = 0, which is a quadratic equation.
The general solution of a quadratic equation is:
x = (-b +or- square-root( b**2 - 4ac))/2a
In our case, a = 1, b = +12 and c = -1564, so
x = (-12 +or- square-root( 12*12 - 4*1*(-1564) ) ) / 2*1
= (-12 +or- square-root( 144 + 6256 ) ) / 2
= (-12 +or- square-root( 6400 ) ) / 2
= (-12 +or- 80) / 2
= 34 or - 46
We ignore -46 since negative rows are not possible, and have:
rows = 34
and
seats per row = 34 + 12 = 46
as a check 34 x 46 = 1564 = total seats</span>
Answer:
90
Step-by-step explanation:
Answer:
77.64% probability that there will be 0 or 1 defects in a sample of 6.
Step-by-step explanation:
For each item, there are only two possible outcomes. Either it is defective, or it is not. The probability of an item being defective is independent of other items. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
The true proportion of defects is 0.15
This means that 
Sample of 6:
This means that 
What is the probability that there will be 0 or 1 defects in a sample of 6?

In which




77.64% probability that there will be 0 or 1 defects in a sample of 6.