Nascent oxygen has much higher reactivity than the oxygen bubbled through the reaction mixture. It doesn't stay nascent for long (you are right about it being converted quick to just O2), which is why it has to be generated in situ
Answer:
make sure that the number of atoms on the left side of the equation equals the number of atoms on the right.
Explanation:
LMBO, for science.
Answer:
<em>The increase in kinetic energy leads to leakage of water from the syringe. When the outside temperature is more than the liquid temperature, say the syringe is out in sunshine, then the liquid becomes slightly warmer.</em>
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
An addition reaction
Step-by-step explanation:
In an addition reaction, two or more molecules come together to form a single product, for example,
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄
This reaction consists of two successive additions. The product of the first reaction becomes a reactant and adds a second molecule of Cl₂ to form C₂H₂Cl₄
C₂H₂ + Cl₂ ⟶ <em>C₂H₂Cl₂
</em>
<em><u>C₂H₂Cl₂</u></em><u> + Cl₂ ⟶ C₂H₂Cl₄
</u>
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄