Answer:
Oxygen and Carbon dioxide
Explanation:
Oxygen is required for respiration whereby energy is released from natural occurring nutrients accompanied by the release of water and carbon dioxide. carbon dioxideis also required by plants to photosynthesise.
Oxygen and carbon dioxide in the troposphere supports life as by enabling respiration in organisms and photosynthesise in plants can. Without oxygen in an environment, only life forms that live by anaerobic respiration will thrive. This affects a regions carrying capacity
Answer:
2Al+ 6HNO3 ---- 3H2 + 2Al(NO3)3
Explanation:
Put coefficient a,b,c, and d for calculation:
a Al + b HNO3 = c H2 + d Al(NO3)3
for Al: a = d
for H: b = 2c
for N: b = 3d
for O: 3b = 9d
Suppose a=1, then d=1, b=3, c=3/2
multiply 2 to make all natural number, a=2, then b=6, c=3, d=2
Answer:
3.10×10¯⁵ ft³.
Explanation:
The following data were obtained from the question:
Density (D) of lead = 11.4 g/cm³
Mass (m) of lead = 10 g
Volume (V) of lead =.?
Density (D) = mass (m) / Volume (V)
D = m/V
11.4 = 10 / V
Cross multiply
11.4 × V = 10
Divide both side by 11.4
V = 10 / 11.4
V = 0.877 cm³
Finally, we shall convert 0.877 cm³ to ft³. This can be obtained as follow:
1 cm³ = 3.531×10¯⁵ ft³
Therefore,
0.877 cm³ = 0.877 cm³ × 3.531×10¯⁵ ft³ /1 cm³
0.877 cm³ = 3.10×10¯⁵ ft³
Thus, 0.877 cm³ is equivalent to 3.10×10¯⁵ ft³.
Therefore, the volume of the lead in ft³ is 3.10×10¯⁵ ft³.
Answer:
The disruption of the bonds or attractions occurs during protein hydrolysis which results in the loss for the primacy structure. The peptide bonds is the bond affected in this scenario.
The disruption of the bonds however only exist in the process of denaturation and this results in a change in the confirmation which could be secondary, tertiary, and quaternary structural related. And example of the bonds affected include salt bridges, disulfide bridges, hydrogen bonds etc.