Answer:
D) The equilibrium lies far to the left
Explanation:
According to the law of mass action, the equilibrium constant K for the reaction at 373K can be calculated as follows:
K =
= 2.19×10^{-10}
([X] means = concentration of X)
This means that in the equilibrium the concentration of the reactant (that is in the denominator) will be much higher (around 10^{10} fold) than the concentrations of the products (that are in the numerator), and this means that the equilibrium lies far to the left (to the reactants side) as very small amount of product is being formed.
Answer:
Calculate the pH of a buffer prepared by mixing 30.0 mL of 0.10 M acetic acid and 40.0 mL of 0.10 M sodium acetate.
Answer:
A) 14. 25 × 10²³ Carbon atoms
B) 34.72 grams
Explanation:
1 molecule of Propane has 3 atoms of Carbon and 8 atoms of Hydrogen.
The sample has 3.84 × 10²⁴ H atoms.
If 8 atoms of Hydrogrn are present in 1 molecule of propane.
3.84 × 10²⁴ H atoms are present in

<u>= 4.75 × 10²³ molecules of Propane</u>.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
No. of Carbon atoms in 1 molecule of propane = 3
=> C atoms in 4.75× 10²³ molecules of Propane = 3 × 4.75 × 10²³
<u>= 14.25 × 10²³ </u>
<u>________________________________________</u>
<u>Gram</u><u> </u><u>Molecular</u><u> </u><u>Mass</u><u> </u><u>of</u><u> </u><u>Propane</u><u>(</u><u>C3H8</u><u>)</u>
= 3 × 12 + 8 × 1
= 36 + 8
= 44 g
1 mole of propane weighs 44g and has 6.02× 10²³ molecules of Propane.
=> 6.02 × 10²³ molecules of Propane weigh = 44 g
=> 4. 75 × 10²³ molecules of Propane weigh =



<u>= 34.72 g</u>
Answer:
I think c biological processes
Answer:
Kc =![\frac{[8.326x10-3]^{1} }{[1.113x10-2]^{1}[1.490x10-2]^{1} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B8.326x10-3%5D%5E%7B1%7D%20%7D%7B%5B1.113x10-2%5D%5E%7B1%7D%5B1.490x10-2%5D%5E%7B1%7D%20%20%7D)
Kc = 50.2059
Explanation:
1. Balance the equation
2. Use the Kc formula
Remember that pure substances, like H2 are not included on the Kc formula