1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
10

Fixed rate mortgage offer:

Engineering
1 answer:
jarptica [38.1K]3 years ago
5 0

Answer: The answer is :

      C) $887

Explanation:

You might be interested in
A consolidation test was performed on a sample of fine-grained soil sample taken from a depth such that the vertical effective s
Scorpion4ik [409]

Answer:

The settlement that is expected is 1.043 meters.

Explanation:

Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil

The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

\Delta H=\frac{H_oC_c}{1+e_o}log(\frac{\bar{\sigma_o}+\Delta \bar{\sigma }}{\bar{\sigma_o}})

where

'H' is the initial depth of the layer

C_c is the Compression index

e_o is the inital void ratio

\bar{\sigma_o} is the initial effective stress at the depth

\Delta \bar{\sigma_o} is the change in the effective stress at the given depth

Applying the given values we get

\Delta H=\frac{8\times 0.3}{1+0.87}log(\frac{154+28}{154})=1.04

3 0
3 years ago
The link acts as part of the elevator control for a small airplane. If the attached aluminum tube has an inner diameter of 25 mm
aksik [14]

Answer:

Tmax=14.5MPa

Tmin=10.3MPa

Explanation:

T = 600 * 0.15 = 90N.m

T_max =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0175}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=14.5MPa

T_{min} =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0125}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=10.3MPa

7 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
At the instant under consideration, the hydraulic cylinder AB has a length L = 0.75 m, and this length is momentarily increasing
Inessa [10]

Answer:

vB = - 0.176 m/s   (↓-)

Explanation:

Given

(AB) = 0.75 m

(AB)' = 0.2 m/s

vA = 0.6 m/s

θ = 35°

vB = ?

We use the formulas

Sin θ = Sin 35° = (OA)/(AB) ⇒  (OA) = Sin 35°*(AB)

⇒   (OA) = Sin 35°*(0.75 m) = 0.43 m

Cos θ = Cos 35° = (OB)/(AB) ⇒  (OB) = Cos 35°*(AB)

⇒   (OB) = Cos 35°*(0.75 m) = 0.614 m

We apply Pythagoras' theorem as follows

(AB)² = (OA)² + (OB)²

We derive the equation

2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB

⇒  (AB)*(AB)' = (OA)*vA + (OB)*vB

⇒  vB = ((AB)*(AB)' - (OA)*vA) / (OB)

then we have

⇒  vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)

⇒  vB = - 0.176 m/s   (↓-)

The pic can show the question.

7 0
3 years ago
Read 2 more answers
compressors, the gas is often cooled while being compressed to reduce the power consumed by the compressor. explain how cooling
ASHA 777 [7]

The amount of work done by steady flow devices varies with the particular gas volume. The kinetic energy of gas particles decreases during cooling.

When the gas is subjected to intermediate cooling during compression, the gas specific volume is reduced, which lowers the compressor's power consumption. Compression is less adiabatic and more isothermal because the compressed gas must be cooled between stages since compression produces heat. The system's thermodynamic cycle's cold sink temperature is lowered by cooling the compressor coils. By increasing the temperature difference between the heat source and the cold sink, this improves efficiency.

Learn more about thermodynamics here-

brainly.com/question/1368306

#SPJ4

8 0
1 year ago
Other questions:
  • Once Joe Martin reports his concerns to senior management at corporate headquarters and requests that the Ethicana plant operati
    8·1 answer
  • Write a function digits() that accepts a non-negative integer argument n and returns the number of digits in it’s decimal repres
    13·1 answer
  • How does running an electric current through wire cause a magnetic field?
    6·1 answer
  • A driver is traveling at 52 mi/h on a wet road. an object is spotted on the road 415 ft ahead and the driver is able to come to
    5·2 answers
  • Perform a theoretical analysis of the rectangular profiled cantilevered beam. Provide a theoretical expression (in symbolic form
    14·1 answer
  • Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
    15·1 answer
  • (4 points) What field of work generally requires (a) an engineer to have a Professional Engineer
    11·1 answer
  • Which of these people is an engineer?
    13·1 answer
  • Calculate the resistance of a circuit with 1.5 A and 120 V. Use the appropriate formula from the list of formulas on the
    9·1 answer
  • I am trying to make a vacuum cannon but all I can use to get out the air is a speed pump to give air to bicycles. I need to make
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!