Answer:
<em>The output will be (3, 4) becomes (8, 10)
</em>
Explanation:
#include <stdio.h>
<em>//If you send a pointer to a int, you are allowing the contents of that int to change.
</em>
void CoordTransform(int xVal,int yVal,int* xNew,int* yNew){
*xNew = (xVal+1)*2;
*yNew = (yVal+1)*2;
}
int main(void) {
int xValNew = 0;
int yValNew = 0;
CoordTransform(3, 4, &xValNew, &yValNew);
printf("(3, 4) becomes (%d, %d)\n", xValNew, yValNew);
return 0;
}
Answer:
13.95
Explanation:
Given :
Vector A polar coordinates = ( 7, 70° )
Vector B polar coordinates = ( 4, 130° )
To find A . B we will
A ( r , ∅ ) = ( 7, 70 )
A = rcos∅ + rsin∅
therefore ; A = 2.394i + 6.57j
B ( r , ∅ ) = ( 4, 130° )
B = rcos∅ + rsin∅
therefore ; B = -2.57i + 3.06j
Hence ; A .B
( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95
Answer:
u_e = 9.3 * 10^-8 J / m^3 ( 2 sig. fig)
Explanation:
Given:
- Electric Field strength near earth's surface E = 145 V / m
- permittivity of free space (electric constant) e_o = 8.854 *10^-12 s^4 A^2 / m^3 kg
Find:
- How much energy is stored per cubic meter in this field?
Solution:
- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:
u_e = 0.5*e_o * E^2
- Plug in the values given:
u_e = 0.5*8.854 *10^-12 *145^2
u_e = 9.30777 * 10^-8 J/m^3
Answer:
total weight of aggregate = 5627528 lbs = 2814 tons
Explanation:
we get here volume of space to be filled with aggregate that is
volume = 2000 × 48 × 0.5
volume = 48000 ft³
now filling space with aggregate of the density that is
density = 0.95 × 119.7
density = 113.72 lb/ft³
and dry weight of this aggregate is
dry weight = 48000 × 113.72
dry weight = 5458320 lbs
we consider here percent moisture is by weigh
so weight of moisture in aggregate will be
weight of moisture = 0.031 × 5458320
weight of moisture = 169208 lbs
so here total weight of aggregate is
total weight of aggregate = 5458320 + 169208
total weight of aggregate = 5627528 lbs = 2814 tons
Answer:
Taking responsibility for your own learning makes it easier to identify your strengths and weaknesses. Once these have been identified you can work on a learning plan that focuses on the areas that you need most help with, increasing the speed of your learning, and build the skills you have been trying to perfect.
Explanation: