If a chemical reaction catalyzed by an enzyme is being carried out, and there is a sudden, drastic decrease in temperature, the thing that will most likely to happen next is going to be the :
“enzyme activity will decrease, and the reaction will proceed very slowly, or possibly not at all.“
Explanation:
This compliance is required to how enzymes bind to other molecules and cause chemical reactions to occur on those molecules. Lowering the temperature reduces the motion of molecules and atoms, expecting this compliance is reduced or lost. As the temperature decreases, so do enzyme activity. While higher temperatures do increase the activity of enzymes and the rate of reactions,
Answer:
3) The relative concentrations of each gas must remain constant.
4)The concentration of each gas will not change.
Explanation:
- For the equilibrium system:
<em>X₂ + Y₂ ⇄ 2XY,</em>
The no. of moles of gases in each side is constant; there is 2 moles of gases at reactants side and 2 moles of gases at products side.
So, changing the volume will not affect on the equilibrium system.
<em>So, the right choice is:</em>
3) The relative concentrations of each gas must remain constant.
4)The concentration of each gas will not change.
The volume becomes two. You have to use the equation P1 x V1 = P2 x V2
P is pressure and V is volume.
P1 = 50 P2 = 125
V1 = 5 V2 = v (we don't know what it is)
Then set up the equation:
50 times 5 = 125 times v
250 = 125v
the divide both sides by 125 and isolate v
2 = v
Therefore the volume is decreased to 2.
Also, Boyle's Law explains this too: Volume and pressure are inversely related, This means that when one goes up the other goes down (ie when pressure increases volume decreases and vice versa). Becuase the pressure went up from 50 KPa tp 125 KPa the volume had to decrease.
Celsius scale is related to kelvin scale by the following equation,
⁰C = K-273
°C = K-273
So as here temperature is given in kelvin, so it can be converted into celsius as follows:
So 20 K = 20K-273 °C
= -253 °C .
So, the 20 K temperature equals to -253 °C.
So , -253 °C is equals to 20 K or 20 K temperature equals to -253 °C.