1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
2 years ago
8

When will he love me 

Physics
2 answers:
Tomtit [17]2 years ago
8 0

Answer:

When you go bald

Explanation:

kipiarov [429]2 years ago
4 0
Put a fork under your pillow tonight, and your wish will come true tomorrow.
You might be interested in
The effective nuclear charge experienced by the outermost electron of Na is different than the effective nuclear charge experien
Nesterboy [21]

Answer:

B) Na has a lower first ionization energy than Ne.  

Explanation:

The atomic number¹ for Na has a value of 11 while in the case of Ne this value is 10. That means that Sodium (Na) has a total number of 11 protons, 11 neutrons and 11 electrons (since it is electrically neutral²). For the case of Neon (Ne) it has 10 protons, 10 neutrons and 10 electrons.

As the atomic number increases, the atomic radius³ shrinks (the orbitals are closer to the nucleus) as a consequence of the electric force. For the case of sodium (Na) the electron in the outermost orbital will experience a lower electric force than the electron placed in the outermost orbital in the atom of Neon (Ne).

Although, the sodium’s atom has more protons and therefore electrons, these eleven electrons will be organized according with the electronic configuration⁴ in the different shells (orbitals) of probabilities of their positions around the atom.

The electronic configuration for Na is:

1s²2s²2p⁶3s¹

The electronic configuration for Ne is:

1s²2s²2p⁶

Since Na needs another orbital to placed its outermost electron, the atomic radius will have a greater value than Ne. The electric force is inversely proportional to the square of the distance between two charged particles, as is established in Coulomb’s law:

F = \kappa_{0} \frac{q1q2}{r^{2}}    (1)

Where q1 and q2 are the charges, \kappa_{0} is the proportionality constant and r is the distance between the two charges.

Hence, the electron in the outermost orbital of Ne is submitted to a greater electric force according with equation 1, the required energy to remove it (ionization energy⁵) will be greater than in the case of Na (<u>for that case will be the first ionization energy</u>).

¹Atomic number: The number of protons or electrons in an atom.

²Electricaly neutral: All the charges are balanced (same number of positive charges and negative charges).

³Atomic radius: Distance between the center of the nucleus and an electron placed in the outermost orbital for a specific atom.

⁴Electronic configuration: Show how the electrons of an atom will be arranged in different orbitals according with the fact that each orbital has a specific number of electrons that can be held.

⁵Ionization energy: Energy required to remove an electron from an atom.

Key values:

First ionization energy of Na: 495 kJ/mol

First ionization energy of Ne: 2080 kJ/mol

Atomic radius of Na: 2.27 Å

Atomic radius of Ne: 1.54 Å

Atomic number of Na: 11

Atomic number of Ne: 10

3 0
3 years ago
Read 2 more answers
The electric force between two charged objects is influenced by
tresset_1 [31]
<span> attraction between the relative abundance of electrons in one object and protons in the other   


</span>
7 0
3 years ago
Ngle of a block is 45 degrees. What is the refractive index​
lyudmila [28]
1.6 ??? I hope I’m right
3 0
3 years ago
We sometimes conform to others because they belong to a certain ____
Andrew [12]

A.) reference group

"A reference group includes individuals or groups that influence our opinions, beliefs, attitudes and behaviors. They often serve as our role models and inspiration"(study.com).

4 0
3 years ago
Read 2 more answers
Physics Homework MathPhys homie if you see this pls help
cluponka [151]

Answer:

1. -8.20 m/s²

2. 73.4 m

3. 19.4 m

Explanation:

1. Apply Newton's second law to the car in the y direction.

∑F = ma

N − mg = 0

N = mg

Apply Newton's second law to the car in the x direction.

∑F = ma

-F = ma

-Nμ = ma

-mgμ = ma

a = -gμ

Given μ = 0.837:

a = -(9.8 m/s²) (0.837)

a = -8.20 m/s²

2. Given:

v₀ = 34.7 m/s

v = 0 m/s

a = -8.20 m/s²

Find: Δx

v² = v₀² + 2aΔx

(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx

Δx = 73.4 m

3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.

d = v₀t

d = (34.7 m/s) (0.56 s)

d = 19.4 m

6 0
3 years ago
Other questions:
  • How does a kitchen sponge floating in water compare to the zone of saturation and the water table
    6·1 answer
  • When monochromatic light passes through the interface between two unknown materials at an angle θ where 0∘&lt;θ&lt;90∘, no chang
    6·1 answer
  • Graphs do not need to have a title.true or false
    11·2 answers
  • The alkali metals all react vigorously with water. Which alkali metal would react to the greatest extent if you have equal amoun
    10·1 answer
  • The smallest level of organization in living things is
    13·1 answer
  • Buoyant force acts in the opposite direction as the force of
    14·1 answer
  • Assuming things about someone based on your experiences with similar people you have encountered is called
    6·1 answer
  • What is kinematics ???<br>need a legendary answer -,-" <br>xD ​
    13·2 answers
  • Describe the two dimensions of the motion of an object in a circle due to centripetal force. Explain why putting them together r
    12·1 answer
  • Velocity ratio of a machine is 4 what does it mean​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!