Answer:
Explanation:
Diffraction grating is used to form interference pattern of dark and bright band.
Distance between adjacent slits (a ) = 1 / 420 mm
= 2.38 x 10⁻³ mm
2.38 x 10⁻⁶ m
wave length of red light
= 680 x 10⁻⁹ m
For bright red band
position x on the screen
= n λD / a , n = 0,1,2,3 etc
D = distance of screen
putting n = 1 , 2 and 3 , we can get three locations of bright red band.
x₁ = λD / a
= 680 x 10⁻⁹ x 2.8 / 2.38 x 10⁻⁶
= .8 m
= 80 cm
Position of second bright band
= 2 λD / a
= 2 x 80
= 160 cm
Position of third bright band
= 3 λD / a
= 3 x 80
= 240 cm
V: velocity of wave
f: frequency
L: wavelenght
v = fL => L = v/f => L = (3x10^8)/(900x10^3) => L = 3.33 x 10^2m
1. Safety equipment is available
2. Person attempting the task has some general knowledge about wiring
3. Not All Cable is Color-Coded
Cable-sheath color coding started in 2001 and is still voluntary. If you have older wiring, don’t assume it complies with the current color coding. However, most manufacturers now follow the standard color code.
4. Stranded wire is more flexible than solid. If you’re pulling wire through conduit, stranded wire makes it easier to get around corners and bends in the conduit. However, if the situation requires pushing wires through conduit, you’ll want to use solid wire.
Kinetic Energy = 1/2mv^2
m= 1200kg
v= 24 m/s
KE = 1/2 (1200kg)(24m/s)^2 = 345,600 N
Answer:
The required angular speed ω of an ultra-centrifuge is:
ω = 18074 rad/sec
Explanation:
Given that:
Radius = r = 1.8 cm
Acceleration due to g = a = 6.0 x 10⁵ g
Sol:
We know that
Angular Acceleration = Angular Radius x Speed²
a = r x ω ²
Putting the values
6 x 10⁵ g = 1.8 cm x ω ²
Converting 1.8 cm to 0.018 m, also g = 9.8 ms⁻²
6 x 10⁵ x 9.8 = 0.018 x ω ²
ω ² = (6 x 10⁵ x 9.8) / 0.018
ω ² = 5880000 / 0.018
ω ² = 326666667
ω = 18074 rad/sec