Answer:
Unsaturated Solution: Less amount of salt in water, clear solution, no precipitation. Saturated Solution: The maximum amount of salt is dissolved in water, Colour of the solution slightly changes, but no precipitation. Supersaturated Solution: More salt is dissolved in water, Cloudy solution, precipitation is visible.
Answer:
All the answers are solved and explained below.
Explanation:
Note: This questions lacks the initial and most necessary data to answer these following questions. I have found a related question. I will be considering that question to carry out the answers.
Question: A car with a mass of 1000 kg is at rest at a spotlight. when the light turns green, it is pushed by a net force of 2000 N for 10 s. (This was the information missing in this question).
Data Given:
m = 1000 kg
F = 2000N
t = 10s
Q1 Solution:
Acceleration = a = ?
F = ma
a = F/m
a = 2000/ 1000
a = 2 
Q2: Solution:
Change in velocity = Δv = ?
acceleration = change in velocity / time
a = Δv/t
Δv = axt
Δv = 2 x 10
Δv = 20 m/s
Q3: Solution:
Impulse = I = ?
Impulse = Force x time
I = 2000 x 10
I = 20000 Ns
Q4: Solution:
Change in Momentum = Δp = ?
Δp = mΔv
Δp = 1000 x 20
Δp = 20000 Kgm/s
Q5: Solution:
Final velocity of the car at the end of 10 seconds = vf = ?
Δp = m x Δv
Δp = m x (vf-vi)
Δp = 1000 x (vf - 0 )
20000 = 1000 x vf
vf = 20000/1000
vf = 20 m/s
Q6: Solution:
Change in momentum the car experiences as it continues at this velocity?
Δp = ?
Δp = mΔv
Δp = m x (0)
Δp = 0
Q7: Solution:
Impulse = Change in momentum
Impulse = Δp
Implulse = 0
Q8: Solution:
Change in momentum = Δp = mΔv
Δp = m(vf-vi)
Δp = 1000 x (0-20)
Δp = -20000 kgm/s
Q9: Solution:
Impulse = Δp
Impulse = -20000 Ns
Q10: Solution:
Impulse = ?
Impulse = F x t
F = impulse/t
F = -20000/4s
F = -5000 N
Q11: Solution:
F = ma
a = ?
a = F/m
a = -5000/1000
a = -5
Answer: chemical → kinetic → electrical → light
Explanation: At the same time when the generator lights up the bicycle lamp the lamp lights up using electrical energy so mechanical energy is also transformed into electrical energy.
Answer:
maximum possible speed by solving above equation for 7D is

minimum possible value of speed for solving x = 6D is given as

Explanation:
Let the nozzle of the hose be at the origin. Then the nearest part of the rim of the tank is at (, ) = (6, 2) and the furthest part of the rim is at (, ) = (7, 2).
The trajectory of the water can be found as follows:


Now from above two equations we have

now we know that height of the cylinder is 2D so we have

by solving above equation we have

now we know that maximum value of x is 7D
so the maximum possible speed by solving above equation for 7D is

minimum possible value of speed for solving x = 6D is given as
