1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
10

A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object

so that it strikes the stationary smaller object which then slides follows the curved track so that it rises vertically to a maximum height, h_{max}h ​max ​​ . The masses are equipped with elastic bumpers so that the impact between them is an elastic collision. If the larger object has a mass , M = 5.41 ~\text{kg}M=5.41 kg and the smaller object has a mass of m = 1.68~\text{kg}m=1.68 kg, then with what velocity, v_0v ​0 ​​ should the player release the larger object so that the smaller object just reaches the target maximum height of h_{max} = 3.0 mh ​max ​​ =3.0m above the horizontal portion of the track?
Physics
1 answer:
Harman [31]3 years ago
5 0

Answer:

v₁₀ = 1.90 m / s

Explanation:

In this exercise we are given the maximum height data, with energy we can know how fast the body came out

Final mechanical energy, maximum height

    Em_{f} = U = m g h

Initial mechanical energy, in the lower part of the track

    Em₀ = K = ½ m v²

    Em=   Em_{f}

    ½ m v² = m g h

    v = √ 2gh

Now we can use the moment to find the speed with which objects collide

The large object has a mass M = 5.41 kg a velocity starts v₁₀, the small object has a mass m = 1.68 kg an initial velocity of zero v₂₀ = 0 and  final velocity v

Initial before the crash

    p₀ = M v₁₀ + 0

Final after the crash

      p_{f} = M v1f + m v

   p₀ =   p_{f}

   M v₁₀ = M v_{1f}+ m v

As the shock is elastic the kinetic energy is conserved

     K₀ = K_{f}

    ½ M v₁₀² = ½ M v_{1f}² + ½ m v²

Let's write the system of equations

    M v₁₀ = M  v_{1f} + m v

    M v1₁₀² = M v_{1f}² + m v²

We cleared v1f in the first we replaced in the second

   v_{1f} = (M v₁₀ - mv) / M

    M v₁₀² = M (M v₁₀ - mv)² / M² + m v²

    M v₁₀² = 1 / M (M² v₁₀² - 2mM v v₁₀ + m² v²) +m v²

     v₁₀² (M - M) + 2 m v v₁₀ - v² (m2 + m) / M = 0

     2 m v₁₀ - v (m + 1) m/ M = 0

     v₁₀ = v (m +1) / (2M)

Let's substitute the value of v

     v1₁₀= √ (2gh) (m +1) / (2M)

Let's calculate

    v₁₀ = √ (2 9.8 3) (1+ 1.68) / (2  5.41)

    V₁₀ = 7.668 (2.68) / 10.82

   v₁₀ = 1.90 m / s

You might be interested in
An Olympic discus thrower (~100 kg) launches the 2.0 kg discus by spinning rapidly (~4 times per second) with arm outstretched (
vladimir1956 [14]

Answer:

F = 1263.03 N

Explanation:s

given,                      

mass of the disk thrower = 100 Kg

mass of the disk = 2 Kg                

angular speed of the disk  = 4 rev/s

arm outstretched = 1 m                  

centripetal force of the disk in the circular path

F = m ω² r                        

ω = 4 x 2 x π        

ω = 25.13 rad/s

F = m ω² r                      

F = 2 x 25.13² x 1

F = 1263.03 N                                              

hence, centripetal force equal to the F = 1263.03 N

6 0
3 years ago
Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Give
Keith_Richards [23]

Complete Question

A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional).

Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10^−12C/(V⋅m) for the permittivity of space and c=3.00×10^8m/s for the speed of light.

Answer:

The electric field vector of the satellite broadcast as measured at the surface of the earth is  E_o = 6.995 *10^{-6} \ V/m

Explanation:

From the question we are told that

     The height of the satellite is  r  = 35000 \ km  =  3.5*10^{7} \ m

      The power output of the satellite is P  = 1 \ KW  =  1000 \ W

       

Generally the intensity of the electromagnetic radiation of the satellite at the surface of the earth is  mathematically represented as  

     I  =  \frac{P}{4 \pi r^2}

substituting values

      I  =  \frac{1000}{4 * 3.142 (3.5*10^{7})^2}

      I  = 6.495*10^{-14} \  W/m^2

This intensity of the electromagnetic radiation of the satellite at the surface of the earth can also be   mathematically represented as  

          I  =  c * \epsilon_o * E_o^2

Where E_o is the amplitude of the electric field vector of the satellite broadcast so

         E_o =  \sqrt{\frac{2 * I}{c * \epsilon _o} }

substituting values

          E_o =  \sqrt{\frac{2 * 6.495 *10^{-14}}{3.0 *10^{8} * 8.85*10^{-12}} }

           E_o = 6.995 *10^{-6} \ V/m

 

   

4 0
3 years ago
Which band of the electromagnetic spectrum has the lowest frequency
Murrr4er [49]

Answer:

Radio waves

Explanation:

Electromagnetic waves are produced by the oscillations of electric and magnetic field. They are transverse waves, which means that the oscillations occur in a direction perpendicular to the direction of propagation of the wave, and they are the only type of waves that can travel through a vacuum.

Electromagnetic waves are classified into 7 different types, depending on their frequencies. From lowest to highest frequencies, we have:

Radio waves

Microwaves

Infrared

Visible light

Ultraviolet

X-rays

Gamma rays

Radio waves are the electromagnetic waves with lowest frequency. They are used, for examples, for satellites, telecommunication, broadcasting.

5 0
3 years ago
The potential energy of a body if its mass is 30 kg and height 30 m and gravity 10m/sec2<br><br>​
Dafna1 [17]

Explanation:

potential energy= mgh

30 × 10 × 30 = 9000J or 9KJ

6 0
2 years ago
What is the name of first magnet​
omeli [17]

Answer:

magnetite

hope \: helps...

3 0
3 years ago
Other questions:
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
  • A warm-up is the exact same thing as a flexibility workout<br><br> True<br> False
    9·1 answer
  • Two massless bags contain identical bricks, each brick having a mass M. Initially, each bag contains four bricks, and the bags m
    5·1 answer
  • How many stars can be seen without a telescope on earth
    11·1 answer
  • The process of making alloys involves(Cooling, Heating or mixing) pure metals to remove impurities. Then the pure metals are(bro
    9·2 answers
  • The sun _____.
    14·1 answer
  • Determine the work done by the constant force. The locomotive of a freight train pulls its cars with a constant force of 15 tons
    13·1 answer
  • Set up differential equation of angular S.H.M​
    5·1 answer
  • A ball of mass 45kg thrown upward with a velocity of 40m/s
    8·1 answer
  • Calculate the mass of the earth if the radius of the earth is 6.38 × 10^6​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!