The horizontal change between two points on a graph is called the 'run'.
The vertical change between two points is called the 'rise'.
Answer is 6 tires.
This is a projectile question.
First make sure units are consistent - express speed in m/s.
20 km/h = 20000m / 3600 s = 5.56 m/s
Assume the takeoff point of the ramp is at ground level (height, h, = 0m). We need to determine how long Joe is in the air, and use that time to calculate the horizontal distance he traveled.
Joe is traveling 5.56 m/s on a ramp angled at 20 degrees. There are vertical and horizontal components to his speed:
Vertical speed = 5.56sin20 = 1.90 m/s
Horizontal speed = 5.56cos20 = 5.22 m/s
An easy way to proceed is to calculate the time it takes for Joe’s vertical speed to reach 0m/s - this represents the time when Joe is at his maximum height and is therefore halfway through the trip. Double whatever time this is to find the total time of the trip. Remember he is decelerating due to gravity:
Time to peak:
a = Δv / Δt
-9.8 = -1.9 / Δt
Δt = 0.19s
Total trip time:
0.19 x 2 = 0.38s
Now that we have the total tome Joe is in the air, we can find the horizontal distance he traveled:
v = d / t
5.22 = d / 0.38
d = 1.98m
Now divide this total distance by the length of an individual tire to find the number of tires he will clear:
1.98 / 0.3 = 6.6 tires
Therefore he can jump 6 tires safely (he will land in the middle of the 7th tire).
Lots of steps I know but just try to think of the situation and keep track of the vertical and horizontal things!
Answer:
it begins to decrease it's altitude
Explanation:
Answer: The answer is D.
Explanation: Momentum can be defined as mass in motion. All objects have mass so if an object is moving, then it has momentum it has its mass in motion. Momentum depends upon the variables mass and velocity. In terms of an equation, the momentum of an object is equal to the mass of the object times the velocity of the object.
The sun is in the middle of the milky way and the planets in our solar system rotate around it