1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
3 years ago
10

A ball of mass M is suspended by a thin string (of negligible mass) from the ceiling of an elevator.uploaded image

Physics
1 answer:
lilavasa [31]3 years ago
6 0

Answer:

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.  T > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor. T > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor. T < mg

(d) The elevator is traveling downward at a constant velocity. T = mg

(e) The elevator is traveling downward and its downward velocity is increasing. T < mg

(f) The elevator is stationary and remains at rest. T = mg

Explanation:

To answer this question, consider all the forces acting on the elevator.

The mass of the ball acting downwards due to gravity = mg

The tension on the string depends on upward or downwards force on the ball. T = m(a+g)

where a is acceleration and increase in velocity causes increase in acceleration, and vice versa. (a = v/t)

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.

If the upward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a+g) > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor.

If the upward velocity is increasing, its acceleration is also increasing.

Then, T = m(a+g) > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor.

If the downward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a-g) < mg

(d) The elevator is traveling downward at a constant velocity

At constant velocity, acceleration is zero, because acceleration is the rate of change of velocity.

T = m(0+g) = mg

(e) The elevator is traveling downward and its downward velocity is increasing

If the downward velocity is increasing, its acceleration is also increasing

T = m(a-g) < mg

(f) The elevator is stationary and remains at rest.

if the elevator is at rest, its acceleration is zero

T = m(0+g) = mg

You might be interested in
The primary reason a light bulb emits light is due to
Mashutka [201]
<span>The primary reason a light bulb emits light is due to the heating of the resistance in the filament of the light bulb. In fact, the power dissipated in a resistor is given by
</span>P=I^2 R
<span>where I is the current and R the resistance. The larger the resistance or the current in the resistor, the larger the power dissipated. Due to this dissipation of power, the temperature of the filament becomes very high, and the resistance becomes incandescent, emitting light.</span>
5 0
3 years ago
Read 2 more answers
Biologists use optical tweezers to manipulate micron-sized objects using a beam of light. In this technique, a laser beam is foc
vekshin1

Answer:

Explanation:

Part A) Using

light intensity I= P/A

A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2

Radius= Diameter/2

P= power= 10*10^-3=0.01 W

light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2

Part B)  Using

I=c*ε*E^2/2

rearrange to solve for E= \sqrt{((I*2)/(c*ε))

c is the speed of light which is 3*10^8 m/s^2

ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1

I= the already solved light intensity= 8.85*10^10 W/m^2

amplitude of the electric field E= \sqrt{(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)

---> E= \sqrt{(1.8*10^11) / (2.66*10^-3) = \sqrt{(6.8*10^13) = 8.25*10^6 V/m    

 

8 0
3 years ago
An unknown substance has a mass of 0.125 kg and an initial temperature of 95.0°C. The substance is then dropped into a calorimet
mr Goodwill [35]

Answer:

c = 1163.34 J/kg.°C

Explanation:

Specific heat capacity:

"Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property."

Use this equation:

mcΔT = ( mw c + mAl cAl )  ΔT'

Rearranging the equation to find the specific heat (c) you get this:

c = (( mw c + mAl cAl )  ΔT') / (mΔT)

c = (( 0.285 (4186) + (0.15)(900)) (32 -25.1)) / ((0.125) (95 - 32))

c = 1163.34 J/kg.°C

7 0
3 years ago
Read 2 more answers
Arrange the substances in the table from the MOST to the LEAST ordered particle arrangement es ) A) wood, water, neon gas B) woo
elena-14-01-66 [18.8K]

Answer:

A) wood, water, neon gas

Explanation:

Matter, which constitutes every known substances is said to exists in three states namely: gaseous, solid and liquid. Each state of matter contain particles that make up their structure.

- Solids have well arranged particles that are tightly packed together to give it its solid shape. Example is wood

- Liquids have particles that are loosely packed together, hence, can still move about. Example is water

- Gases have particles that are not packed together, hence, their ability to roam freely. Example is neon gas

Based on this, the order of MOST to LEAST ordered particle arrangement is solid - liquid- gas i.e. wood - water - neon gas.

7 0
3 years ago
0/2 File Limit
slamgirl [31]

Answer:

Speed at which it will reach the ground is given as

v_f = 46.8 m/s

Total time for which it will remain in air is given as

t = 6.3 s

Explanation:

As we know that the object is projected upwards with speed

v_i = 15 m/s

g = - 9.81 m/s^2

now when it will reach the ground then we have

y = v_y t + \frac{1}{2} at^2

so we have

-100 = 15 t - \frac{1}{2}(-9.81) t^2

4.905 t^2 - 15 t - 100 = 0

so we have

t = 6.3 s

Now speed of the object when it reaches the ground is given as

v_f = v_i + at

v_f = -15 + (9.81)(6.3)

v_f = 46.8 m/s

8 0
3 years ago
Other questions:
  • Explain our ideas about why the terrestrial planets are rocky and have less gas than the giant planets.
    14·1 answer
  • The reacting force that is equal to and opposite in the direction to the centripetal force and tends to fling air out of the cen
    10·1 answer
  • A football player is running with a velocity or 10 m/s. At that velocity, his momentum is 2500 kg*m/s. What is the football play
    11·1 answer
  • A pursuit spacecraft from the planet Tatooine is attempting to catch up with a Trade Federation cruiser. As measured by an obser
    11·2 answers
  • Which qualifications are typical for a Manufacturing career? Check all that apply.
    11·1 answer
  • You pull your little sister across a flat snowy field on a sled. Your sister plus the sled have a mass of 22 kg. The rope is at
    14·1 answer
  • CAN SOMEONE PLS HELP ME ILL GIVE YOU BRAINLIEST
    5·2 answers
  • A storage tank contains a liquid at depth y where y=0 when the tank is half full. liquid is withdrawn at a constant flow rate q
    10·1 answer
  • Highest common factor of 12r and 10
    14·1 answer
  • Light of different colors is emitted from different stars because :.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!