Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
The answer is 24 J
F K =.25*8 N
= 2N
F = f k = 2 N
Since a = 0
W = f * s
2 N * 12 m = 24 J
The coefficient of friction is a ratio used to quantify the friction force among two gadgets when it comes to the everyday pressure this is keeping them collectively. The coefficient of friction is critical attention at some stage in material selection and floor requirement determination.
For instance, ice on steel has a low coefficient of friction – the 2 materials slide past each different without problems – whilst rubber on the pavement has an excessive coefficient of friction – the substances no longer slide past each other without difficulty.
The coefficient of friction is dimensionless and it does not have any unit. it is a scalar, meaning the direction of the force does not have an effect on the physical quantity. The coefficient of friction depends on the gadgets that are causing friction.
Learn more about the coefficient of friction here brainly.com/question/20241845
#SPJ4
Answer:
Crust, Upper mantle, mantle, outer core, inner core
Explanation:
The Earth's layers have been clasified in 5 according to the materials that conform them, theri physical properties, strengths and also their state of matter. We all know how the outer layer of the Earth looks like, but if we start to dig a huge hole we are going to see different types por materials due to a change in pressure, temperature, and other factors. At the very center of the Earth there's what's called "core". The core is liquid and at extremely high temperatures. This is because of the enormous amount of pressure the rest of the Earth is putting it under. So, if we list the different layers of the Earth according to the materials they are made of, from the Earth's surface to the core, the answer is:
1) Crust (surface)
2) Upper Mantle
3) Mantle
4) Outer core
5) Inner core
In some books you may find a layer called Lithosphere. Tis layer consists not only of the crust, but also it contains the transition zone between the upper mantle and the crust.
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃