Basically, you want to take the integral of each interval and compare them. The two intervals with the same integral represent equal displacement of the particle. And since delta(x) is always 2, all you have to do is average the initial and final velocities of each interval and multiply by two to find total displacement.
Hope it helped.
Edit to show calculations:
2 * [ (0 + 10)/2 ] = 10 for interval AB
2 * [ (7 + 3)/2 ] = 10 for interval DE
Answer:
the impedance of the circuit is 25.7 ohms.
Explanation:
It is given that,
Voltage, V = 50 volts
Frequency, f = 60 Hz
Resistance, R = 25 ohms
Capacitive resistance, 
Inductive resistance, 
We need to find the impedance of the circuit. It is given by :


Z = 25.7 ohms
So, the impedance of the circuit is 25.7 ohms. Hence, this is the required solution.
Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance


For first dark fringe

Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm