Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that orbital velocity at certain height from the surface of Earth is given as

here we know that



now we have


Part b)
When a loose rivet is moving in same orbit but at 90 degree with the previous orbit path then in that case the relative speed of the rivet with respect to the satellite is given as

Answer:
E = q V B describes the electric field induced
E Proportional to V B
while the magnet is pushed into the coil the induced field (B) will increase (consider 1 turn of the coil)
If V is constant the E-field will increase due to increasing B and the galvanometer will deflect accordingly
When V drops to zero the deflection must again be zero
So one would see a blip due to the deflection of the galvanometer
Note that as V increases the galvanometer will deflect one way and then as V drops to zero the deflection will be opposite (drop to zero when V is zero)
B always increases to a constant value because of the properties of the magnet.
Answer: 4.50*10^-6T (0.00000450071T)
Explanation: A current carrying conductor has been knowing to generate a specific amount of magnetic field.
This is given by the Bio-savart law (mathematical).
The Bio-savart law is a mathematical equation that gives the value of strength of the magnetic field created by a current carrying conductor.
B=(Uo* I) /2πr
Where
B= strength of magnetic field
Uo = magnetic permeability in free space = 1.257 *10^-6
r = distance between current carrying conductor and any reference point.
By doing the neccesary algebra, we have
B=(1.257 *10^-6 * 180)/ (2 * 3.142 * 8)
B= 2.2626 *10^-4 / 50.2857
B=4.5 * 10^-6T (0.00000450071T)
Perhaps D. if it is the lowebsr possible frequency then it would most likely be the last. I may not be 100 percent right, but that's just an educated guess.
Let M = mass of the skier,
v2 = his speed at the end of the track.
By conservation of energy,
1/2 Mv^2 = 1/2 Mv2^2 + Mgh
Dividing by M,
1/2 v^2 = 1/2 v2^2 + gh
Multiplying by 2,
v^2 = v2^2 + 2gh
Or v2^2 = v^2 - 2gh
Or v2^2 = 4.8^2 - 2 * 9.8 * 0.46
Or v2^2 = 23.04 - 9.016
Or v2^2 = 14.024 m^2/s^2-----------------------------(1)
In projectile motion, launch speed = v2
and launch angle theta = 48 deg
Maximum height
H = v2^2 sin^2(theta)/(2g)
Substituting theta = 48 deg and value of v2^2 from (1),
H = 14.024 * sin^2(48 deg)/(2 * 9.8)
Or H = 14.024 * 0.7431^2/19.6
Or H = 14.024 * 0.5523/19.6
Or H = 0.395 m = 0.4 m after rounding off
Ans: 0.4 m
The answer in this question is 0.4 m