Answer:
The maximum velocity is 1.58 m/s.
Explanation:
A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.
Spring constant, K = 100 N/m
mass, m = 0.1 kg
Amplitude, A = 5 cm = 0.05 m
Let the angular frequency is w.

The maximum velocity is

Answer:

Explanation:
Given that,
The current flowing in the circuit, I = 3 A
The power of the battery, P = 25 W
We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :

Put all the values to find R.

So, the resistance is equal to
.
Answer:
Explanation:
The speed of sound in air to be 343 m/s.
Given:
distance 'd' = 5 m
L = 12 m
It can be concluded that path difference must be equal to half of the wavelength when person is observing destructive interference'y' at 1 m distance from the equidistant position
Since
λ/2 = yd/L
λ/2 = (1 x 5)/12
λ = 0.833m
Frequency of the sound is given by,
f = v / λ => 343 / 0.833
f=411.6 Hz
The models are used to represent what you are studying in this case would be a planet. A model of Saturn and its rings and the moons surrounding it would be fantastic to look at when you have no way of going there