Answer:
PQ = 3.58, and RQ = 10.4
Step-by-step explanation:
We are given the hypotenuse of the triangle, and an angle. Use sin and cos to solve.
Hypotenuse = 11,
Opposite side is PQ
Adjacent side is RQ
x = 19
Sin x = (opposite side)/(hypotenuse)
Cos x = (adjacent side)/(hypotenuse)
For PQ, this is the side opposite to the angle, so use sin,
Sin 19 = x/11
11(Sin 19) = x
3.58 = x (rounded to the nearest hundredth)
For RQ, this is the side adjacent to the angle, so use cos,
Cos 19 = x/11
11(Cos 19) = x
10.4 = x (rounded to the nearest hundredth)
Answer:
There are 685464 ways of selecting the 5-card hand
Step-by-step explanation:
Since the hand has 5 cards and there should be at least 1 card for each suit, then there should be 3 suits that appear once in the hand, and one suit that apperas twice.
In order to create a possible hand, first we select the suit that will appear twice. There are 4 possibilities for this. For that suit, we select the 2 cards that appear with the respective suit. Since there are 13 cards for each suit, then we have
possibilities. Then we pick one card of all remaining 3 suits. We have 13 ways to pick a card in each case.
This gives us a total of 4*78*13³ = 685464 possibilities to select the hand.
Answer:
Step-by-step explanation:
28° into radians
28° = ( 28 *
)
Divide 28 and 180 by 4 we get
= (
)
Hope it helped :)
Answer:
20.25
Step-by-step explanation: