Answer:
The total pressure of the mixture in the tank of volume 6.25 litres at 51°C is 1291.85 kPa.
Explanation:
For N2,
Pressure(P₁)=125 kPa
Volume(V₁)=15·1 L
Temperature (T₁)=25°C=25+273 K=298 K
Similarly, for Oxygen,
Pressure(P₂)= 125 kPa
Volume(V₂)= 44.3 L
Temperature(T₂)=25°C= 298 K
Then, for the mixture,
Volumeof the mixture( V)= 6.25 L
Pressure(P)=?
Temperature (T)= 51°C = 51+273 K=324 K
Then, By Combined gas laws,

or, 
or, 
or, 
∴P=1291.85 kPa
So the total pressure of the mixture in the tank of volume 6.25 litres at 51°C is 1291.85 kPa.
Answer:
It's true :) Hope that helps
Answer:
The pH of the solution is 4.60.
Explanation:
The pH gives us an idea of the acidity or basicity of a solution. More precisely, it indicates the concentration of H30 + ions present in said solution. The pH scale ranges from 0 to 14: from 0 to 7 corresponds to acid solutions, 7 neutral solutions and between 7 and 14 basic solutions. It is calculated as:
pH = -log (H30 +)
pH= -log (2,5 x 10-5)
<em>pH=4.60</em>
Yes, if it’s a parallel circuit the wires are two different wires so it will light because that bulb isn’t connected to the one that went out
Answer:
1,063 grams H₃PO₄
Explanation:
To find the mass of phosphoric acid (H₃PO₄), you should (1) convert molecules to moles (via Avogadro's number) and then (2) convert moles to grams (via molar mass from periodic table).
Molar Mass (H₃PO₄): 3(1.008 g/mol) + 30.974 g/mol + 4(15.998 g/mol)
Molar Mas (H₃PO₄): 97.99 g/mol
6.534 x 10²⁴ molecules H₃PO₄ 1 mole 97.99 g
--------------------------------------------- x ------------------------------------- x --------------
6.022 x 10²³ molecules 1 mole
= 1,063 grams H₃PO₄