Explanation:
T = 409.5 K, P = 1.50 atm: V = 22.4 L The ideal gas law is: PV = nRT where. P = pressure. V = volume n = number of moles.
Answer: The ionization of pure water forms <u><em>hydroxide and hydronium ions.</em></u>
Explanation:
Ionization is a reaction in the pure water in which water breaks down into its constituting ions that hydronium ion and hydroxide ions.

One molecule of water looses its proton to form hydroxide ion and l=the lost protons get associated with another water molecule to form hydronium ion.
Answer is: atoms have the greatest kinetic energy in liquid iron (2,000°C).
The average kinetic energy of molecules depends on the temperature.
At high temperature(2,000°C), molecules of iron have greater kinetic energy than molecules of iron at low temperature (1,600°C, 65°C and 25°C)..
Read more on Brainly.com - brainly.com/question/8237916#readmore
Answer:
The covalent bond in Cl₂ is break and combine with sodium to form NaCl through ionic bond.
Explanation:
Chemical equation:
Na + Cl₂ → NaCl
Balanced chemical equation:
2Na + Cl₂ → 2NaCl
The given reaction indicate the formation of sodium chloride.
Sodium chloride is an ionic compound. It is formed by the reaction of chlorine and sodium. The type of bond in Cl₂ is covalent. Both chlorine atoms are tightly held together through sharing of electrons. When sodium chloride is formed the covalent between the chlorine atoms are break and it react with sodium . The chlorine toms thus gain the one electron from the sodium atom and became negative ion while sodium by losing its one valance electrons became positive ions. The strong electrostatic forces are develop between them and ionic bond is formed.