I believe your answer is: What is the enthalpy of formation of magnesium oxide?
Hope this helps! :)
Number of moles of oxygen = x
number of moles of nitrogen = y
x = 2y
initial pressure, p1 = 0.8 atm
final pressure, p2 = 1.10 atm
At constant volume and temperature p1 / n1 = p2 / n2
=> p1 / p2 = n1 / n2
n1 = x + y = 2y + y = 3y
n2 = 0.2 + 3y
=> p1 / p2 = 3y / (0.2 + 3y)
=> 0.8 / 1.10 = 3y / (0.2 + 3y)
=> 0.8 (0.2 + 3y) = 1.10 (3y)
0.16 + 2.4y = 3.3y
=> 3.3y - 2.4y = 0.16
=> 0.9y = 0.16
=> y = 0.16 / 0.9
=. x = 2*0.16/0.9 = 0.356
Answer: 0.356 moles O2
1 mole of any substance contains Avogadro's number.
So, 1 mole of O2= 6.023x10^23 molecules
3 mole of O2= 6.023x10^23x3 molecules
= 1.8069x10^24 molecules
Each molecule of Oxygen has 2 atoms.
therefore,
1.8069x10^24 molecules= 1.8069x10^24 x 2 atoms
= 3.6138x10^24 atoms.
Answer: Cornea
Explanation: The cornea is the only part of a human body that has no blood supply as it gets oxygen directly through the air.
Answer:

Explanation:
1. Write the skeleton equation for the half-reaction
NO₃⁻ ⟶ N₂O
2. Balance all atoms other than H and O
2NO₃⁻ ⟶ N₂O
3. Balance O by adding H₂O molecules to the deficient side.
2NO₃⁻ ⟶ N₂O + 5H₂O
4. Balance H by adding H⁺ ions to the deficient side.
2NO₃⁻ + 10H⁺ ⟶ N₂O + 5H₂O
5. Balance charge by adding electrons to the deficient side.
2NO₃⁻ + 10H⁺ + 8e⁻ ⟶ N₂O + 5H₂O
The amount of charge required to reduce 2 mol of NO₃⁻ is 8 F
