Answer:
That is extremely confusing. Try contacting your prof.
Explanation:
Answer:
0.296 J/g°C
Explanation:
Step 1:
Data obtained from the question.
Mass (M) =35g
Heat Absorbed (Q) = 1606 J
Initial temperature (T1) = 10°C
Final temperature (T2) = 165°C
Change in temperature (ΔT) = T2 – T1 = 165°C – 10°C = 155°C
Specific heat capacity (C) =..?
Step 2:
Determination of the specific heat capacity of iron.
Q = MCΔT
C = Q/MΔT
C = 1606 / (35 x 155)
C = 0.296 J/g°C
Therefore, the specific heat capacity of iron is 0.296 J/g°C
You convert kinetic energy into thermal energy when you rub two sticks together.
Yes, I agree.
Chemistry can be difficult.
<h3>
Answer:</h3>
0.024 kg CaO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.41 mol CaO
2.5 M Solution
<u>Step 2: Identify Conversions</u>
1000 g = 1 kg
Molar Mass of Ca - 40.08 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CaO - 40.08 + 16.00 = 56.08 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
0.024114 kg CaO ≈ 0.024 kg CaO