Answer:D the pressure increases
Explanation:
Answer:
7.3 atm
Explanation:
- Use the formula P1V1 = P2V2
- Rearrange formula and then plug in values.
- Hope this helped! Let me know if you need more help or a further explanation.
The new volume at standard temperature and pressure is 5.08 L.
Explanation:
As per the kinetic theory of gases, the volume occupied by gas molecules will be inversely proportional to the pressure of the gas molecules. This is termed as Boyle's law.
So, pressure∝
Thus, if two pressure and two volumes are given then,

Now, we known the values of P₁ = 8 atm, V₁ = 635 mL, P₂ = 1 atm and V₂ we have to determine. We are considering P₂ = 1 atm, because we have to determine V₂ at standard temperature and pressure. And standard pressure is 1 atm.

Thus, the new volume at standard temperature and pressure is 5.08 L.
This is a guess, but I think it could be the lack of limiting factors.
Answer:
Molarity of the packet is 0.5M
Explanation:
In the reaction of acetic acid with NaOH:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O + Na⁺
<em>1 mole of acetic acid reacts with 1 mole of NaOH.</em>
<em />
When you are titrating the acid with NaOH, you reach equivalence point when moles of acid = moles of NaOH.
Moles of NaOH are:
3.0mL = 3.0x10⁻³L ₓ (0.1 mol / L) =<em> 3.0x10⁻⁴ moles</em> of NaOH = moles of CH₃COOH.
Now, you find the moles of acetic acid in the hot sauce packet. But molarity is the ratio between moles of the acid and liters of solution.
As you don't know the volume of your packet, <em>you can assume its density as 1g/mL. </em>Thus, volume of 0.6g of hot sauce is 0.6mL = 6x10⁻⁴L.
And molarity of the packet is:
3.0x10⁻⁴ moles acetic acid / 6x10⁻⁴L =
<h3>0.5M</h3>