Answer:
To satisfy the hypotheses of the Mean Value Theorem a function must be continuous in the closed interval and differentiable in the open interval.
Step-by-step explanation:
As f(x)=2x3−3x+1 is a polynomial, it is continuous and has continuous derivatives of all orders for all real x, so it certainly satisfies the hypotheses of the theorem.
To find the value of c, calculate the derivative of f(x) and state the equality of the Mean Value Theorem:
dfdx=4x−3
f(b)−f(a)b−a=f'(c)
f(x)x=0=1
f(x)x=2=3
Hence:
3−12=4c−3
and c=1.
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.
Answer:
B- 24 pints
Step-by-step explanation:
128 x 3= 384 ounces
1 ounce = 0.0625
0.0625 x 384= 24 pints
Hope this helps ^-^
Answer:

Step-by-step explanation:
We are given that


We have to find the value of Q(x) and Remainder R(x).
Quotient, 
Remainder,
We know that

