Answer:
Electric current is electric charge in motion. It can take the form of a sudden discharge of static electricity, such as a lightning bolt or a spark between your finger and a ground light switch plate. ... Most electric charge is carried by the electrons and protons within an atom.
Explanation:
because it is
Answer:
a) a = 3.09 m/s²
b) aₓ = 2.60 m/s²
Explanation:
a) The magnitude of her acceleration can be calculated using the following equation:

<u>Where</u>:
: is the final speed = 8.89 m/s
: is the initial speed = 0 (since she starts from rest)
a: is the acceleration
d: is the distance = 12.8 m

Therefore, the magnitude of her acceleration is 3.09 m/s².
b) The component of her acceleration that is parallel to the ground is given by:

<u>Where</u>:
θ: is the angle respect to the ground = 32.6 °

Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².
I hope it helps you!
Answer:
Part a)

Part b)

Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Explanation:
Part a)
Let say the collision between Moose and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part b)
Let say the collision between Camel and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
<span>the body is moving horizontally, it doesnt matter watever kind of horizontal forces are acting.
Therefore the normal force is equal to the weight
N=mg=4.2*9.8=41N
Note: the other data in the problem have no relevance
answer
</span> the normal force on the sled is 41N
If total charge Q is enclosed in the surface of cube
then we will have say that total flux linked with all surfaces of the cube will be given by

since the position of charge is symmetric with respect to the center of the cube so here this whole flux will be equally linked with each of the face of the cube
So here total 6 faces of the cube is there and the total flux of the charge will equally divide in these 6 faces
so flux linked with each face is given by formula

so each face will have above flux due to central position of charge Q