See attache picture for answer
A tangent line creates a 90 degree angle with a radius line that touches the tangent Line.
Line BC is a radius that touches the tangent line at point C
The angle created is 90 degrees.
The answer is C. 90 degrees.
If tan theta is -1, we know immediately that theta is in either Quadrant II or Q IV. We need to focus on Q IV due to the restrictions on theta.
Because tan theta is -1, the ray representing theta makes a 45 degree angle with the horiz axis, and a 45 degree angle with the negative vert. axis. Thus the hypotenuse, by the Pythagorean Theorem, tells us that the hyp is sqrt(2).
Thus, the cosine of theta is adj / hyp, or +1 / sqrt(2), or [sqrt(2)]/2
The secant of theta is the reciprocal of that, and thus is
2 sqrt(2)
---------- * ------------ = sqrt(2) (answer)
sqrt(2) sqrt(2)
68-33 blockers ?????????????????????????????????????????!?!!