The other of the four organic molecules is carbohydrates.
All four of them are:
Nucleic Acids (DNA and RNA stuff)
Proteins
Lipids
& Carbohydrates
The strength of the electromagnet depends on how many coils you wrap round and how high the voltage is. ... N Increasing the number of coils, which adds more field lines and makes the electromagnet stronger. This is the magnetic field around a piece of wire, compared to a magnetic field on a loop or solenoid it is weak.
I Hoped This Helped From My Knowledge And Have A Splendid Day ❤️❤️❤️
Answer:
(b) Torque will increase.
Explanation:
Torque is given as the product of force and moment arm (radius).
τ = F x r
F = τ / r
where;
F is force
τ is torque
r is radius (moment arm)
Keeping force constant, we will have the following;
τ ∝ r
This shows that torque is directly proportional moment arm (radius), thus increase in moment arm, will cause increase in torque.
For instance;
let the constant force = 5 N
let the initial moment arm, r = 2m
Torque, τ = 5 N x 2m = 10 Nm
When the moment arm is increased to 4 m
Torque, τ = 5 N x 4m = 20 Nm
Therefore, at a constant force, increasing in the Moment arm, will cause increase in torque.
Coorect option is "(b) Torque will increase."
Answer:
Friction works against the motion and acts in the opposite direction. When one object is sliding on another it starts to slow down due to friction. ... By rubbing them together we generate friction and, therefore, heat. The force F of friction pushes back on the block
Explanation:
Answer:
a) v = 1524.7 m/s
b) T = 8.47*10^-4 s
λ = 1.29 m
Explanation:
a) First, in order to calculate the speed of the sound wave, you take into account that the velocity is constant, then, you use the following formula:

d: distance traveled by the sound wave, which is twice the distance to the ocean bottom = 2*324 m = 648 m
t: time that sound wave takes to return to the sub = 0.425

hence, the speed of the sound wave is 1524.7 m/s
b) Next, with the value of the velocity of the wave you can calculate the wavelength of the wave, by using the following formula:

f: frequency = 1.18*10^3 Hz

And the period is:

hence, the wavelength and period of the sound wave is, respectively, 1.29m and 8.47*10^-4 s