Answer:
The neutral wire is often confused with ground wire, but in reality, they serve two distinct purposes. Neutral wires carry currents back to power source to better control and regulate voltage. Its overall purpose is to serve as a path to return energy.
Answer:
a = 3.27 m/s²
F = 32.7 N
Explanation:
Draw a free body diagram. There are three forces:
Weight force mg pulling straight down.
Normal force N pushing perpendicular to the slope.
Friction force F pushing parallel up the slope.
Sum of forces in the parallel direction:
∑F = ma
mg sin θ − F = ma
Sum of torques about the cylinder's axis:
∑τ = Iα
Fr = ½ mr²α
F = ½ mrα
Since the cylinder rolls without slipping, a = αr. Substituting:
F = ½ ma
Two equations, two unknowns (a and F). Substituting the second equation into the first:
mg sin θ − ½ ma = ma
Multiply both sides by 2/m:
2g sin θ − a = 2a
Solve for a:
2g sin θ = 3a
a = ⅔ g sin θ
a = ⅔ (9.8 m/s²) (sin 30°)
a = 3.27 m/s²
Solving for F:
F = ½ ma
F = ½ (20 kg) (3.27 m/s²)
F = 32.7 N
Explanation:
Effective nuclear charge is defined as he net positive charge experienced by an electron in an atom. It is termed "effective" because the shielding effect of electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner-layer electrons.
The 1s is the closest shell to the nucleus of an therefore maximum nuclear charge is experienced. The formula for effective nuclear charge is:
Zeff = Z – S
where
Z = the number of protons in the nucleus, and
S = the shielding constant, the average number of electrons between the nucleus and the electron.
Hence, the energy required to remove an electron from the 1s orbital is the strongest.
Answer:
a. 5 batteries b. 1050 mAh
Explanation:
Here is the complete question
A student project is required to be portable and hand held. It requires 6 V DC power at a current of 150 mA. The batteries for the power supply must last for a minimum of 7 hours of continuous operation. NiMH rechargeable batteries in AA size are to be used. A) How many batteries are needed? B) What mAh capacity should the batteries have?
Solution
A) How many batteries are needed?
Since the nominal voltage for a single NiMH battery is 1.2 V per battery and we require 6V DC power, we combine the batteries in series to obtain a total voltage of 6 V. The number of batteries required, n = total voltage/voltage per cell = 6V/1.2V per battery = 5 batteries
So, the number of batteries needed is 5.
B) What mAh capacity should the batteries have?
Since the batteries are in series, they would each deliver a current of 150 mA. Since we require a current of 150 mA for 7 hours, the number of milliampere-hours capacity mAh of batteries required is Q = It where I = current = 150 mA and t = time = 7 hours.
So, Q = It = 150 mA × 7 h = 1050 mAh.
So, the batteries should have a mAh of 1050 mAh