1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
3 years ago
13

How to find i1, i2,i3

Physics
1 answer:
MrRissso [65]3 years ago
6 0

to find i1, i2, and i3 we need to find the total current.

to find the total current, you need to find the total resistance

you're already given the total voltage, Vs

to find Rtotal, start from the resistors furthest from the voltage source.

R3 and R4 are in series so

Rtotal= R3+R4 = 6+3 = 9 ohms

9 ohms is now in parallel with R2 so,

Rtotal= (\frac{1}{R3+R4}) ^{-1}\\ + (\frac{1}{R2}) ^{-1})^-1= (1/18)^-1 +( 1/9)^-1 = 6 ohms

6 ohms is in series with R1 so

Rtotal=  4+6=10 ohms

itotal= (\frac{Vtotal}{Rtotal})

= 120 v/10 ohms = 12 A

i total = i1 because all the current flows through it

i1= 12A

so the current splits into i2 and i3 and the amount of current that flows through a branch depends on the total resistance in each branch.

we already calculated the resistance in the R3+R4 & R2 branch as 6 ohms

since r3 and r4 are in series, the same current will flow through them

r3+r4 = 9 ohms

r2= 18 ohms

so the current in r2 will be half that of R3 & R4 (V=IR)

using the current divider rule

Ix = Itotal * \frac{Rtotal}{Rx}

i2= 12A x (6 ohms/18 ohms)= 4 A

i3= 12A x (6 ohms/9 ohms) = 8 ohms

You might be interested in
A 1022kg Caprice car stopped at an intersection is rear-ended by a 1620kg ranger truck moving with a speed of 14.5m/s. If the ca
Alika [10]

Answer:

Explanation:

mass of car, m = 1022 kg

mass of truck, M = 1620 kg

initial velocity of truck, U = 14.5 m/s

initial velocity of car, u = 0 m/s

Let the final velocity of car is v and the final velocity of truck is V.

Collision is elastic, so the coefficient of restitution, e = 1

Use conservation of momentum

initial momentum of car + initial momentum of truck = final momentum of car + final momentum of truck

m x u + M x U = m x v + M x V

0 + 1620 x 14.5 = 1022 v + 1620 V

23490 = 1022 v + 1620 V ..... (1)

Use the formula of coefficient of restitution

e = \frac{V_{1}-V_{2}}{u_{2}-u_{1}}

1 (14.5 - 0) = v - V

14.5 = v - V

V = v - 14.5 .... (2)

Put in equation (1)

23490 = 1022 v + 1620 (v - 14.5)

23490 = 1022 v + 1620 v - 23490

46980 = 2642 v

v = 17.8 m/s

Put in equation (2)

V = 17.8 - 14.5

V = 3.3 m/s

Thus, the speed of car is 17.8 m/s and the velocity of truck is 3.3 m/s after collision.

8 0
3 years ago
Water at room temperature is discharged from a pipe at a rate of 1000 gallons per minute (gpm). Express this flow rate in cubic
marshall27 [118]

Answer

given,

discharge rate from pipe = 1000 gallons/minutes

now,

flow rate in  cubic meters per second

1 gallon = 0.00378541 m³

1 min = 60 s

Q = 1000\times \dfrac{0.00378541\ m^3}{1\ gallon}\times \dfrac{1\ min}{60\ s}

Q = 0.063 m³/s

flow rate in  liters per minute

1 gallon = 3.78541 L

 Q = 1000\times \dfrac{3.78541\ m^3}{1\ gallon}

 Q = 3785.41 m³/min

flow rate in cubic feet per second

 1 gallon = 0.133681 ft³

 1 min = 60 s

Q = 1000\times \dfrac{0.133681\ ft^3}{1\ gallon}\times \dfrac{1\ min}{60\ s}

Q = 2.23 ft³/s

4 0
3 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
What is the density of a cube that has a mass of 3.75 g and a volume of 3 mL?
valina [46]

Answer:

\displaystyle \rho=1.25\ g/ml

Explanation:

<u>Density </u>

The density of a substance is the mass per unit volume. The density varies with temperature and pressure.

The formula to calculate the density of a substance of mass (m) and volume (V) is:

\displaystyle \rho=\frac{m}{V}

The cube has a mass of m=3.75 g and a volume of V=3 ml, thus the density is:

\displaystyle \rho=\frac{3.75\ g}{3\ ml}

\boxed{\displaystyle \rho=1.25\ g/ml}

Since 1 kg=1000 mg and 1 lt = 1000 ml, the density has the same value but with different units:

\displaystyle \rho=1.25\ kg/l

6 0
3 years ago
The temperature of a black body is 500 and its radiation is of wavelength 600 . If the number of oscillators with energy is 100
stiks02 [169]

Answer: An equation is missing in your question below is the missing equation

a) ≈ 8396

b) 150 nm/k

Explanation:

<u>A) Determine the number of Oscillators in the black body</u>

number of oscillators = 8395

attached below is the detailed solution

<u>b) determine the peak wavelength of the black body </u>

Black body temperature = 20,000 K

applying Wien's law / formula

λmax = b / T  ------ ( 1 )

T = 20,000 K

b = 3 * 10^6 nm

∴  λmax = 150 nm/k

4 0
3 years ago
Other questions:
  • As you (increase, decrease) in altitude, air pressure decreases.
    10·1 answer
  • A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to
    10·1 answer
  • A segment of DNA that codes for the ability to make one type of protein molecule is known as a(n)____________________. A) axon B
    14·2 answers
  • Calculate the kinetic energy of a 10kg cart traveling at 4 m/s?
    8·2 answers
  • How does weight change as the gravitational acceleration changes and why?
    5·1 answer
  • Assume the acceleration of the object is a(t) = −9.8 meters per second per second. (Neglect air resistance.) With what initial v
    7·1 answer
  • The purpose of fuses and circuit breakers is to
    12·1 answer
  • Air in a thundercloud expands as it rises. If its initial temperature is 292 K and no energy is lost by thermal conduction on ex
    7·1 answer
  • Question 1
    13·1 answer
  • Please expert solve this​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!