Answer: The gravitational acceleration on planet X is 5 N/kg
On Earth (with the gravitational accelartion g_E) the mass of 2kg will correspond to

On planet X we are told the same measure is only 10N. Since there is a proportional relationship between g and F, we can calculate g_X:

From the question, The kinetic energy of the fired arrow is equal to the work done by the bale of hale in stopping the arrow.
We make use of the following formula
mv²/2 = F'd................... Equation 1
Where
- m = mass of the arrow
- v = velocity of the arrow
- F' = average stopping force acting on the arrow
- d = distance of penetration
Make F' the subject of the equation
F' = mv²/2d.................. Equation 2
From the question,
Given:
- m = 20 g = 0.02 kg
- v = 60 m/s
- d = 40 cm = 0.4 m
Substitute these values into equation 2
Hence, The average stopping force acting on the arrow is 90 N
Learn more about average stooping force here: brainly.com/question/13370981
Answer:
Mass of the car is 1576 kg.
Explanation:
Let the mass of the car be
kg.
Given:
Initial velocity of the car is, 
As the car stops, final velocity of the car is, 
Change in momentum is, 
Now, we know that, momentum is given as the product of mass and velocity.
So, change in momentum is given as:

Therefore, the mass of the car is 1576 kg.
The 'net' force acting on the box is (9 - 3) = 6 newtons
in the direction that Carlos is pushing.
Force = (mass) x (acceleration)
6 = (3) x (acceleration)
Divide each side by 3 :
<em>2 m/s² = acceleration</em>
Answer:

Explanation:
Moment of inertia of given shell
where
M represent sphere mass
R -sphere radius
we know linear speed is given as 
translational 
rotational 
total kinetic energy will be


fraction of rotaional to total K.E
