Answer:
Q1. Regular (A)
Q2. 105° (C)
Q3. x=45°
Step-by-step explanation:
Q1. A regular polygon is a polygon with all sides and angles equal.
Q2. The sum of the measure of exterior angles of a polygon is always 360°. Therefore, 360°-255°=105°
Q3. 148°+112°+(2x+10)°+(2x)°+90°= Sum of angles in a pentagon.
<u><em>Note</em></u>: The square at the fifth angle shows that its a right angle which is 90°. Also all the angles are equal to the sum of angles in a pentagon 'cause the polygon has 5 sides ( a pentagon).
Sum of interior angles of a polygon is: (n-2)180°. Where "n" is the number of sides of the polygon.
Therefore the sum of interior angles is (5-2)180°=540°
solving the equation you have;
360°+4x=540°
4x=540°-360°
4x=180°
x=180°/4
x=45°
therefore x=45°
Answer:
its about checkers cou nt and answer
Step-by-step explanation:
Answer:
true -6 is greater than -7
Step-by-step explanation:
Answer:
y = 6
x = 2
Step-by-step explanation:
rearrange the first equation in terms of x
x = (y - 2)/2
substiute x in the second equation
y = -5[(y-2)/2] +16
Now simpilify and solve for y
y = (-5y + 10)/2 +16
y = -5/2y + 5 + 16
y + 5/2y = 5 + 16
3.5y = 21
y = 6
Now substitue y in the first equation to solve for x
x = (6 - 2)/2
x = 2
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = 4\frac{2}{3}x\qquad \qquad yes\qquad \checkmark\qquad \qquad k = 4\frac{2}{3} \\\\[-0.35em] ~\dotfill\\\\ y=3(x-1)\implies \stackrel{\textit{distributing}}{y=3x-3}\qquad \qquad yes\qquad \checkmark \qquad \qquad k=3](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%204%5Cfrac%7B2%7D%7B3%7Dx%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%5Cqquad%20%5Cqquad%20k%20%3D%204%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%28x-1%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bdistributing%7D%7D%7By%3D3x-3%7D%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%20%5Cqquad%20%5Cqquad%20k%3D3)
bear in mind that, direct proportional equations have a y-intercept.
for y = kx, is pretty much y = kx + 0, where 0 = y-intercept.
and the "k" constant of proportionality, is pretty much just its slope.