Explanation:
The forces acting on a massless object (spring, hook, string or wire, if considered massless) will always balance. Balanced forces acting on an object cause it to compress or stretch. The forces acting on a mass will never cancel.
Answer:
if Y is the position and X the time: in the first one you will see a crescent function that starts sharp and starts to curve down as the time pases. as the cart is slowing down, you will need more time to move the same as before.
Y (position)
I
sensor-------------------------------------------------------------------
I o
I o
I o
I o
I o
I o
I o
I------------------------------------------------------------------------------------- X (time)
in the second case the cart starts close to the sensor and starts getting sharper and sharper as the time pases. This is because the velocity is increasing, so for each second that pases, you will travel more distance that the second before it.
Y (position)
I
sensor ----------------------
I o
I o
I o
I o
I o
I o
I o
I------------------------------------------------------------------------------------- X (time)
i hope you can understand it, kinda hard to do graphs here.
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.
BUT
Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position. so here distance is 40 m but displacement is obviously zero meter. so answer is 0 more information on: https://www.physicsclassroom.com/class/1DKin/Lesson-1/Distance-and-Displacement
Answer:12.8°c
Explanation:
specific heat capacity of copper(c)=0.39J*g°c
Mass(m)=20grams
Quantity of heat(Q)=100joules
Temperature rise(@)=?
@=Q/(mxc)
@=100/(20x0.39)
@=100/7.8
@=12.8°c
General relativity is a theory of space and time. The theory was published by Albert Einstein in 1915. The central idea of general relativity is that space and time are two aspects of spacetime. Spacetime is curved when there is gravity, matter, energy, and momentum.