Answer:
In chemistry and physics, a valence electron is an outer shell electron with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed; in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.
Explanation:
Answer:
They are malleable.
Explanation:
Malleability is the property of metals that causes them to be able to be formed into thin sheets without breaking.
All metals are malleable.
The reason why metals are malleable is because the atoms in the metals have a stable structure and hence, when beaten, the atoms can move freely among each other and maintain their structure.
For rectilinear motions, derived formulas all based on Newton's laws of motion are formulated. The equation for acceleration is
a = (v2-v1)/t, where v2 and v1 is the final and initial velocity of the rocket. We know that at the end of 1.41 s, the rocket comes to a stop. So, v2=0. Then, we can determine v1.
-52.7 = (0-v1)/1.41
v1 = 74.31 m/s
We can use v1 for the formula of the maximum height attained by an object thrown upwards:
Hmax = v1^2/2g = (74.31^2)/(2*9.81) = 281.42 m
The maximum height attained by the model rocket is 281.42 m.
For the amount of time for the whole flight of the model rocket, there are 3 sections to this: time at constant acceleration, time when it lost fuel and reached its maximum height and the time for the free fall.
Time at constant acceleration is given to be 1.41 s. Time when it lost fuel covers the difference of the maximum height and the distance travelled at constant acceleration.
2ax=v2^2-v1^2
2(-52.7)(x) = 0^2-74.31^2
x =52.4 m (distance it covered at constant acceleration)
Then. when it travels upwards only by a force of gravity,
d = v1(t) + 1/2*a*t^2
281.42-52.386 = (0)^2+1/2*(9.81)(t^2)
t = 6.83 s (time when it lost fuel and reached its maximum height)
Lastly, for free falling objects, the equation is
t = √2y/g = √2(281.42)/9.81 = 7.57 s
Therefore, the total time= 1.41+6.83+7.57 = 15.81 s
Fe/Fr I think hope this helps
Answer : The energy released in first step of thorium-232 decay chain is 
Explanation :
First we have to calculate the mass defect
.
The balanced reaction is,

Mass defect = Sum of mass of product - sum of mass of reactants


conversion used : 
Now we have to calculate the energy released.



The energy released is 
Therefore, the energy released in first step of thorium-232 decay chain is 