Answer:
-19 y^2 + 18 x y + 13 x^2
Step-by-step explanation:
Simplify the following:
16 x^2 + 15 x y - 19 y^2 - (3 x^2 - 3 x y)
Factor 3 x out of 3 x^2 - 3 x y:
16 x^2 + 15 x y - 19 y^2 - 3 x (x - y)
-3 x (x - y) = 3 x y - 3 x^2:
16 x^2 + 15 x y - 19 y^2 + 3 x y - 3 x^2
Grouping like terms, 16 x^2 + 15 x y - 19 y^2 - 3 x^2 + 3 x y = -19 y^2 + (15 x y + 3 x y) + (16 x^2 - 3 x^2):
-19 y^2 + (15 x y + 3 x y) + (16 x^2 - 3 x^2)
x y 15 + x y 3 = 18 x y:
-19 y^2 + 18 x y + (16 x^2 - 3 x^2)
16 x^2 - 3 x^2 = 13 x^2:
Answer: -19 y^2 + 18 x y + 13 x^2
Answer:
In words the answer is between t=0 and t=2.
In interval notation the answer is (0,2)
In inequality notation the answer is 0<t<2
Big note: You should make sure the function I use what you meant.
Step-by-step explanation:
I hope the function is h(t)=-16t^2+32t because that is how I'm going to interpret it.
So if we can find when the ball is on the ground or has hit the ground (this is when h=0) then we can find when it is in the air which is between those 2 numbers.
0=-16t^2+32t
0=-16t(t-2)
So at t=0 and t=2
So the ball is in the air between t=0 and t=2
Interval notation (0,2)
Inequality notation 0<t<2
-32/40 + -35/40 = -32+-35/40
= -67/40
= -1.675
The answer would then be -1.675.
Answer:
22 grams
Step-by-step explanation:
loses 50% of it's mass per 22 years
so after 22 years the mass would be 44 grams
22 years later would leave 50% of 44 grams = 22 grams