1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
3 years ago
11

What types of collisions can result from making unsafe passes?

Physics
1 answer:
SSSSS [86.1K]3 years ago
7 0
<span>Unsafe passes are passes with restricted line of sight, passes with cross traffic, narrow passes which are unsafe. 
Several collision can result from making unsafe passes. Some of them are: 
-getting run off the road
-getting sideswiped
-getting hit head-on</span>
You might be interested in
Explain the different methods that can be used to model the motion of an object.
Simora [160]

Answer:

You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. idk if this helps.

Explanation:  

5 0
3 years ago
Read 2 more answers
Which nucleus completes the following equation?
natka813 [3]
the answer is C




IGNORW irritating but not even on the golden bath bath and
3 0
3 years ago
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
3 years ago
A horizontal 826 N merry-go-round of radius 1.17 m is started from rest by a constant horizontal force of 57.8 N applied tangent
Julli [10]

Answer:

The kinetic energy of the merry-go-round is \bf{475.47~J}.

Explanation:

Given:

Weight of the merry-go-round, W_{g} = 826~N

Radius of the merry-go-round, r = 1.17~m

the force on the merry-go-round, F = 57.8~N

Acceleration due to gravity, g= 9.8~m.s^{-2}

Time given, t=3.47~s

Mass of the merry-go-round is given by

m &=& \dfrac{W_{g}}{g}\\~~~~&=& \dfrac{826~N}{9.8~m.s^{-2}}\\~~~~&=& 84.29~Kg

Moment of inertial of the merry-go-round is given by

I &=& \dfrac{1}{2}mr^{2}\\~~~&=& \dfrac{1}{2}(84.29~Kg)(1.17~m)^{2}\\~~~&=& 57.69~Kg.m^{2}

Torque on the merry-go-round is given by

\tau &=& F.r\\~~~&=& (57.8~N)(1.17~m)\\~~~&=& 67.63~N.m

The angular acceleration is given by

\alpha &=& \dfrac{\tau}{I}\\~~~&=& \dfrac{67.63~N.m}{57.69~Kg.m^{2}}\\~~~&=& 1.17~rad.s^{-2}

The angular velocity is given by

\omega &=& \alpha.t\\~~~&=& (1.17~rad.s^{-2})(3.47~s)\\~~~&=& 4.06~rad.s^{-1}

The kinetic energy of the merry-go-round is given by

E &=& \dfrac{1}{2}I\omega^{2}\\~~~&=&\dfrac{1}{2}(57.69~Kg.m^{2})(4.06~rad.s^{-1})^{2}\\~~~&=& 475.47~J

5 0
3 years ago
Suppose that Hubble's constant were H0 = 51 km/s/Mly (which is not its actual value). What would the approximate age of the univ
bija089 [108]

Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Given the data in the question;

Hubble's constant; H_0 = 51km/s/Mly

Age of the universe; t = \ ?

We know that, the reciprocal of the Hubble's constant ( H_0 ) gives an estimate of the age of the universe ( t ). It is expressed as:

Age\ of\ Universe; t = \frac{1}{H_0}

Now,

Hubble's constant; H_0 = 51km/s/Mly

We know that;

1\ light\ years = 9.46*10^{15}m

so

1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m

Therefore;

H_0 = 51\frac{km}{\frac{s}{Mly} } = 51000\frac{m}{s\ *\ Mly}  \\\\H_0 = 51000\frac{m}{s\ *\ (9.46*10^{21}m)} \\\\H_0 =  5.39 *10^{-18}s^{-1}\\

Now, we input this Hubble's constant value into our equation;

Age\ of\ Universe; t = \frac{1}{H_0}\\\\t = \frac{1}{ 5.39 *10^{-18}s^{-1}} \\\\t = 1.855 * 10^{17}s\\\\We\ convert\ to\ years\\\\t =  \frac{ 1.855 * 10^{17}}{60*60*24*365}yrs \\\\t = \frac{ 1.855 * 10^{17}}{31536000}yrs\\\\t = 5.88 *10^9 years

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Learn more: brainly.com/question/14019680

6 0
3 years ago
Other questions:
  • You tie a cord to a pail of water and swing the pail in a vertical circle of radius 0.710 mm . What minumum speed must the pail
    14·1 answer
  • Urgent<br> Please write the complete answer
    8·1 answer
  • What is the difference between weight and mass?
    10·2 answers
  • Which of the following would decrease the resistance to the flow of an electric current through a body?
    9·1 answer
  • An object moving in a constant velocity will always have a
    9·1 answer
  • A long, thin solenoid has 155 turns per meter and radius 1 m. The current in the solenoid is increasing at a uniform rate of 28
    8·1 answer
  • The distance versus this plot for a particular object shows a quadratic relationship. Which column of distance data is possible
    8·1 answer
  • If you get a ticket for speeding, it is based on your average speed or instantaneous speed? Explain
    5·1 answer
  • 3.- Un barco que tiene el motor averiado es ayudado por dos remolcadores para entrar en el puerto. Cada uno de ellos tira de él
    11·1 answer
  • What is the electric current measured in
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!