Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Answer:
8977.7 kg/m^3
Explanation:
Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3
Reading of balance when block is immersed in water = 4.3 N
According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.
Buoyant force = weight of the water displaced by the block
Buoyant force = Volume of water displaced x density of water x g
= 55 x 10^-6 x 1000 x .8 = 0.539 N
True weight of the body = Weight of body in water + buoyant force
m g = 4.3 + 0.539 = 4.839
m = 0.4937 kg
Density of block = mass of block / volume of block
= 
Density of block = 8977.7 kg/m^3
Answer:
Explanation:
a is the acceleration
μ is the coefficient of friction
Acceleration of the object is given by

Velocity at the bottom

after travelling 4m , its velocity becomes 0



Coefficient of kinetic friction
μ = F/N

Therefore, the Coefficient of kinetic friction is 0.31
Answer:
1.56 J
Explanation:
The potential energy only depends on the vertical height from the ground level.
We consider the ground level to have zero P.E.
So when it is 2 m above the ground level,
P.E. = mgh
= 0.078×10×2
= 1.56 J