(a) 2NO(g) + O₂(g) ⇄2NO₂(g)kp
(b) 2N₂O(g)⇄2NO(g) + N₂(g) kp
(c) N₂(g) + O₂(g)⇄ 2NO(g) kp
Now A is
2NO +O₂⇄2NO₂
ΔG° =ΔG° products - ΔG reactants
=2× 51.3-(256.6)
-70.6kJ/mol.
ΔG° = -RT Inkp
-70.6 = -8.314 ×10⁻³ ˣ 298.15 ˣInkJ
InkJ = 28.48
kp=2.34 ˣ 10¹²
B is
ΔG° = 2× 86.6 - 2 × 104.2 = -35.2
-35.2 = 8.314 × 10⁻³ ˣ 298.15 ˣInkJ
InkJ = 14.2
kp = 1.47ˣ 10⁶
C is
It is also similar
kp = 4.62 ˣ 10⁻³I
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
Answer:
1. Either larger or smaller than the displacement of either wave acting alone, depending on the signs of the displacements of the two waves.
The figure is showing a volume of 2.4 mL becuase it's feel 4 little segments.
Therefore, the answer is 2.4 mL.