Answer:
Yes, the errors are likely to be relevant
Explanation:
A systematic error occurs as a result of the instrument used in carrying out and experiment. These errors are a result of small fluctuations in the measurement properties of the instrument. This happens when the instrument departs from non-ideal situations, for example as a result of physical expansion or change in temperature. For instance, let the resistance be measured to be up to 10 Ω ± 1 Ω
The error of the resistance, ε = 0.01Ω
Answer:
The diameter is 0.000056 m
Explanation:
Lets explain the relation between the meter and the micrometer
1 Meter is equal to 1000000 (one million) micrometers
1 micrometer = 
The symbol of the meter is m
The symbol of micrometer is μm
A human hair is approximately 56 µm in diameter
We need to express this diameter in meter
To do that we divide this number by 1,000,000 or multiply it by 
→
56 µm = 0.000056 m
→ OR
→
→ 56 µm = 0.000056 m
<em>The diameter is 0.000056 m</em>
In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.
<h3>What are gravitational waves?</h3>
A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.
In conclusion, the merger of two black holes is the first direct detection of gravitational waves.
Read more about Wave
brainly.com/question/23271222
#SPJ1
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Earth's gravity and the satellite's velocity keeps it so that it stays in orbit. (there is a more complicated side, too...)