Answer:
A aceleração do carrinho é de, aproximadamente, 1,46 m/s².
Explanation:
F=ma
F: force
m: mass
a: aceleration
66 = 45a
a=66/45= 22/15 ≅ 1,4666 m/s²
1. The time taken for the car to reach a velocity of 60 m/s is 8.57 s
2. The distance travelled during the time is 257.14 m
<h3>What is acceleration? </h3>
The acceleration of an object is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
1. How to determine the time
- Initial velocity (u) = 0 m/s
- Acceleration (a) = 7 m/s²
- Final velocity (v) = 60 m/s
- Time (t) =?
a = (v – u) / t
Thus,
t = (v – u) / a
t = (60 – 0) / 7
t = 8.57 s
2. How to determine the distance
- Initial velocity (u) = 0 m/s
- Acceleration (a) = 7 m/s²
- Final velocity (v) = 60 m/s
- Distance (s) = ?
v² = u² + 2as
60² = 0² + (2 × 7 × s)
3600 = 0 + 14s
3600 = 14s
Divide both sides by 14
s = 3600 / 14
s = 257.14 m
Learn more about acceleration and velocity:
brainly.com/question/491732
brainly.com/question/19466392
#SPJ1
I believe the percentage is between 15-20%. Stress is a well known factor that affects the performance of people.
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572
Answer:
1317.4 m
Explanation:
We are given that
Angle=
Initial speed =
We have to find the horizontal distance covered by the shell after 5.03 s.
Horizontal component of initial speed=
Vertical component of initial speed=
Time=t=5.03 s
Horizontal distance =
Using the formula
Horizontal distance=
Horizontal distance=1317.4 m
Hence, the horizontal distance covered by the shell=1317.4 m