Answer:
m≈501.57 g
Explanation:
The density formula is:
d=m/v
Let’s rearrange the formula for m. m is being divided by v. The inverse of division is multiplication, so multiply both aides by v.
d*v= m/v*v
d*v=m
The mass can be found by multiply the density and the volume.
m=d*v
The density is 1.06 grams per milliliter and the volume is 473.176 milliliters.
d= 1.06 g/mL
v= 473.176 mL
Substitute the values into the formula.
m= 1.06 g/mL * 473.176 mL
Multiply. When multiplying, the mL will cancel out.
m= 501.56656 g
Let’s round to the nearest hundredth. The 6 in the thousandth place tells us to round the 6 to a 7 in the hundredth place.
m ≈501.57 g
The mass is about 501.57 grams.
velocity of the physics instructor with respect to bus

acceleration of the bus is given as

acceleration of instructor with respect to bus is given as

now the maximum distance that instructor will move with respect to bus is given as




so the position of the instructor with respect to door is exceed by

so it will be moved maximum by 3 m distance
Because even though the moon is smaller, therefore a weaker gravitational pull, the moon is much closer to the earth than the sun, thus having a greater gravitational pull
Answer:
f = q
Explanation:
In the attachment we can see a diagram of the parallel rays.
The dotted line represents the normal to the mirror surface
These rays when reflected using the constructor equation
where p and q are the distance to the object and the image respectively.
Since the rays are parallel P = inf
1 / f = 1 / inf + 1 / q
f = q
this means that all the rays focus on one focal point.
It would be: Activation Energy = 300 KJ
Hope this helps!